Reação de 69 Genótipos de Feijoeiro-Comum à *Curtobacterium flaccumfaciens* pv. flaccumfaciens

<u>Stella Cristina Dias Valdo Lima</u>¹, Adriane Wendland², Leonardo Cunha Melo³, Helton Santos Pereira⁴ Maythsulene Inácio Sousa Oliveira⁵, Fábio José Gonçalves⁶, Leila Garcês de Araújo⁷

Resumo

A murcha-de-curtobacterium, causada por *Curtobacterium flaccumfaciens* pv. flaccumfaciens, que por meio da colonização dos vasos xilemáticos impedem a passagem de água e nutrientes para a parte superior da planta causando mosaico, flacidez, encarquilhamento de bordo, queima de bordo, nanismo, murcha e morte e consequentemente perdas na produção do feijoeiro. Este trabalho objetivou avaliar 69 genótipos de feijoeiro-comum (*Phaseolus vulgaris* L.) inoculados com isolados de *C. flaccumfaciens* pv. flaccumfaciens para direcionamento do programa de melhoramento visando resistência à esta doença. Os genótipos foram inoculados com suspensão bacteriana uma concentração de 10⁸ ufc.mL⁻¹ e avaliados conforme a severidade da doença. Os genótipos apresentaram desempenhos diferenciados ocorrendo a formação de sete grupos, com genótipos suscetíveis: CNFC 10429 e CNFC 10729 e resistentes IPA 9 e Ouro Branco.

Introdução

A cultura do feijoeiro está sujeita ao ataque de doenças que acarretam perdas significativas na produção, dentre elas, a murcha-de-curtobacterium, causada por *Curtobacterium flaccumfaciens* pv. flaccumfaciens (Hedges 1922). Os sintomas causados pela bactéria na planta são: flacidez, mosaico, queima de bordo, encarquilhamento de bordo, nanismo, murcha e morte das plantas (Wendland et al. 2008). No Brasil, esta doença foi constatada em 1995, na safra das águas, no Estado de São Paulo (Maringoni and Rosa 1997) e atualmente, pode ser encontrada no Paraná, Santa Catarina, Goiás, Distrito Federal e Mato Grosso do sul (Leite Jr. et al. 2002, Uesugi et al. 2003 and Theodoro et al. 2010). A resistência genética da cultivar é a forma mais eficiente e econômica para o controle da doença, porém, exige um contínuo trabalho de seleção de genótipos devido a variabilidade genética do patógeno (Yorinori and Kihl 2001). Assim, este trabalho objetivou avaliar a reação de 69 genótipos de feijoeiro-comum à *C. flaccumfaciens* pv. flaccumfaciens para direcionamento do programa de melhoramento visando resistência a murcha-de-curtobacterium.

Material e Métodos

Os experimentos foram conduzidos em casa de vegetação e Laboratório de Fitopatologia da Embrapa Arroz e Feijão, localizada em Santo Antônio de Goiás. Em delineamento experimental inteiramente casualizado, com três repetições e uma testemunha, 69 genótipos do programa de melhoramento do feijoeiro desta instituição foram inoculados com suspensão bacteriana a uma concentração de 10⁸ ufc.mL⁻¹(Silva Júnior 2011). A inoculação foi realizada aos dez dias após o plantio introduzindo-se 20µL da suspensão bacteriana com seringa, acima das folhas cotiledonares, e a testemunha, foi inoculada com água destilada estéril. Após 15 dias da inoculação, a severidade da doença foi avaliada, numa escala de notas variando de 1 a 9, em que a nota 1 corresponde a ausência de sintomas e 9 plantas mortas. Os dados obtidos foram submetidos à análise de variância e as médias comparadas pelo teste Tukey a 5% de probabilidade utlizando-se programa de análise estatística Sisvar (Ferreira 1999).

¹ Doutoranda do Programa de Pós-graduação em Genética e Melhoramento de Plantas – UFG; e-mail: sdiasvaldo@gmail.com;

² Pesquisadora da Embrapa Arroz e Feijão – CNPAF – EMBRAPA/ Santo Antônio de Goiás. e-mail: adriane.wendland@embrapa.br;

³ Pesquisador da Embrapa Arroz e Feijão – CNPAF – EMBRAPA/ Santo Antônio de Goiás. email: leonardo.melo@embrapa.br;

⁴ Pesquisado da Embrapa Arroz e Feijão – CNPAF – EMBRAPA/ Santo Antônio de Goiás. email: helton.pereira@embrapa.br;

⁵ Mestranda do Programa de Pós-graduação em Agronomia – UFG; email: maythsulene@gmail.com;

⁶ Pós-Doutorando – Genética e Melhoramento de Plantas CNPAF – EMBRAPA/ Santo Antônio de Goiás. email: fabiogoncalvesufg@gmail.com;

Professora do Departamento de Agronomia – UFG/Goiânia. e-mail: leilagarcesaraujo@gmail.com.

Resultados e Discussão

A análise de variância mostrou diferenças significativas entre os genótipos de acordo com o teste F a 5% de probabilidade (Tabela 1).

Tabela 1 - Análise de variância de 69 cultivares inoculadas com isolados de *C. flaccumfaciens* pv. flaccumfaciens

FV	GL	QM	Fc	Pr>Fc
Genótipos	68	2,881574	3,605	0,0000
Erro	482	0,799392		
Total Corrigido	550			
CV (%)	25,32			

Tabela 2 – Reação de genótipos de feijoeiro- comum a murcha-de-curtobacterium.

Genótipos	Médias		Genótipos	Médias		Genótipos	Médias	
IPA 9	2,0*	a**	BAT 477	3,2	abcde	Madrepérola	3,6	abcdef
Ouro Branco	2,2	ab	Uirapuru	3,2	abcde	BRS MG Talismã	3,6	abcdef
Michelite	2,5	abc	BRS Notável	3,2	abcde	BRS Supremo	3,6	abcdef
BRS Requinte	2,8	abcd	AB 136	3,3	abcde	A 211	3,6	abcdef
SCS 202 Guará	2,8	abcd	Embaixador	3,3	abcde	BRS Cometa	3,6	abcdef
TO	2,8	abcd	Valente	3,3	abcde	Riz 30	3,7	abcdef
BRS Grafite	3,0	abcde	BRS Vereda	3,3	abcde	Bush Blue Lake	3,7	abcdef
IPA 7419	3,0	abcde	BRS Campeiro	3,3	abcde	Agreste	3,8	abcdefg
TIB 3042	3,0	abcde	AND 277	3,3	abcde	IAC Carioca Akytã	3,9	bcdefg
Vermelho	3,0	abcde	Cornell 49242	3,4	abcdef	CNFP 10104	3,9	bcdefg
PI 207 262	3,0	abcde	IPA 1	3,4	abcdef	Expedito	4,0	bcdefg
BRS Pitanga	3,1	abcde	IAC Carioca Aruã	3,4	abcdef	BRS Horizonte	4,0	bcdefg
DiacolCalima	3,1	abcde	CNFR's 11997	3,4	abcdef	Tesouro	4,1	cdefg
Ametista	3,1	abcde	IAC Uma	3,4	abcdef	BRS Pontal	4,1	cdefg
IPA 6	3,1	abcde	Pérola	3,5	abcdef	CNFP 10120	4,2	cdefg
IAC Carioca Pyatã	3,1	abcde	Waf 75	3,5	abcdef	Frijólica 0-3-1	4,2	cdefg
BRS Esplendor	3,1	abcde	BRS Esteio	3,5	abcdef	Mortinô	4,3	cdefg
BRS Radiante	3,1	abcde	BRS Estilo	3,5	abcdef	Magestoso	4,3	cdefg
BRS Marfim	3,2	abcde	Aporé	3,5	abcdef	BRS Sublime	4,3	cdefg
Widusa	3,2	abcde	HFS 465-63-1	3,6	abcdef	União	4,5	defg
TU	3,2	abcde	CNFC 10408	3,6	abcdef	Pioneiro	4,8	defg
CNFP 10132	3,2	abcde	Preto Uberabinha	3,6	abcdef	CNFC 10429	5,2	fg
BRS Timbó	3,2	abcde	Coquinho	3,6	abcdef	CNFC 10729	5,6	g

^{*}Médias baseadas em notas de severidade de murcha-de-curtobacterium em que,plantas são consideradas resistentes quando apresentaram notas entre 1e 3, moderadamente resistentes com notas entre 3.1 e 5.0e suscetíveis com notas entre 5.1 e 9.0. **Médias seguidas por mesma letra não diferem estatisticamente pelo teste de Tukey a 5% de probabilidade.

Mediante análise (Tabela 2) verifica-se que todos os genótipos testados apresentaram sintomas da murchade-curtobacterium com variação de 2,00 a 5,60 nas notas. Houve variação dos sintomas dependendo do genótipo avaliado sugerindo a existência de especificidade entre isolados e genótipos. Os genótipos mais resistentes foram o IPA 9 e Ouro Branco enquanto os mais suscetíveis foram o CNFC 10429 e CNFC 10729. Houve formação de sete grupos de reação, conforme desempenho diferenciado dos genótipos (Tabela 2). Nos genótipos moderadamente resistentes houve uma evolução dos sintomas, mas com menor incidência quando comparados aos genótipos suscetíveis. Apesar de não diferirem estatisticamente os genótipos Ouro Branco e IPA 9 apresentaram melhores respostas de resistência quando comparados aos genótipos pertencentes ao mesmo grupo.

Conclui-se que foi possível detectar respostas diferentes de cada genótipo quando inoculado com isolados diferentes de *C. flaccumfaciens* pv. flaccumfaciens. Estas informações são importantes para seleção de genótipos resistentes à esta doença.

Agradecimentos

Os autores agradecem a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES pela concessão da bolsa de estudos e a Embrapa Arroz e Feijão pelo apoio financeiro e estrutura para realização deste trabalho.

Referências

Ferreira DF (1999) **Sistema Para Análise De Variância Para Dados Balanceados (SISVAR)**. UFLA, Lavras, 92 p.

Hedges FA (1922) Bacterial wilt of the bean caused by *Bacterium flaccumfaciens* Nov. Sp. Science LV: 433-434.

Leite RP et al. (2002) Ocorrência de *Curtobacterium flaccumfaciens* pv. flaccumfaciens em feijoeiro no Paraná e Santa Catarina. **Fitopatologia Brasileira 26:** 303.

Maringoni AC and Rosa EF (1997) Ocorrência de *Curtobacterium flaccumfaciens* pv. flaccumfaciens em feijoeiro no Estado de São Paulo. **Summa Phytopathologica 23**: 160-162.

Silva Júnior TAFD (2011) *Curtobacteriumflaccumfaciens* pv. *flaccumfaciens*: Sobrevivência, gama de hospedeiras e efeito do pré-plantio de aveia e trigo na ocorrência da doença. Doutorado em Agronomia, Universidade Estadual Paulista, Botucatu. 98 p.

Stone LF, Silva SCD and Guimarães CM (2006) Características climáticas e atributos dos solos dos sítios de fenotipagem para tolerância à seca da Embrapa Arroz e Feijão. Embrapa, Santo Antônio de Goiás,19 p. Theodoro GDF et al. (2010) First report of bacterial wilt of common bean caused by *Curtobacterium flaccumfaciens* pv. flaccumfaciens in Mato Grosso do Sul. **Journal of Plant Pathology 92**: 107.

Tukey JW (1949) Comparing individual means in the analysis of variance. **Biometrics 5**: 99-114.

Uesugi CH, Freitas MA and Menezes JR (2003) Ocorrência de *Curtobacterium flaccumfaciens* pv. *flaccumfaciens* em feijoeiro, em Goiás e no Distrito Federal. **Fitopatologia Brasileira 28**: 324.

Wendland A et al. (2008) Padrão de sintomas de isolados de *Curtobacterium flaccumfaciens* pv. *flaccumfaciens* em dois genótipos de feijoeiro comum. Embrapa, Santo Antônio de Goiás, 19p.

Yorinori JT and Kihl RADS. Melhoramento de plantas visando resistência a doenças. In: Nass L et al. (Ed.). **Recursos genéticos & melhoramento - plantas**. Fundação MT, Rondonópolis, 1183p.