PHENOTYPIC CHARACTERIZATION OF THE RUDÁ x AND 277 COMMON BEAN RIL POPULATION

L. C. da Silva ${ }^{1 *}$, L.M. Moura ${ }^{1}$, L. D. Barili ${ }^{1}$, N. M. do Vale ${ }^{1}$, T. L P. O. Souza ${ }^{2}$, P. C. S. Carneiro ${ }^{1}$, E. G. de Barros ${ }^{1,3}$ and J. E. de S. Carneiro ${ }^{1}$
${ }^{1}$ Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-000, Brazil; ${ }^{2}$ Embrapa Arroz e Feijão (Embrapa Rice and Beans), Santo Antônio de Goiás, GO 75375-000, Brazil;
${ }^{3}$ Universidade Católica de Brasília, Brasília, DF 70.790-160, Brazil.
*thiago.souza@embrapa.br

Populations composed by recombinant inbred lines (RIL) are very useful to develop genetic linkage maps. Keep the genetic structure of these populations over the generation advancement is important to develop accurate and reliable linkage maps. The existence of genetic variability within those populations is essential for detection of the significant association between molecular markers and loci controlling quantitative or qualitative traits. For this reason, the main objective of this work was to quantify the phenotypic diversity of the RIL population derived from crosses between Rudá and AND 277, a potential new core mapping population for common bean.

As described by Sanglard et al. (2013), F_{2} plants derived from the cross Rudá x AND 277 were conducted under greenhouse condition up to the F_{10} generation using the single seed descent (SSD) method to obtain the RIL population. In this work, a group of 393 RIL's, the parents, and five commercial control cultivars were screened in the field, in a 20×20 triple lattice design, for seven quantitative traits. Because of the low efficiency of the lattice, the data were analyzed in randomized blocks with additional treatments (parents) with three replications. The genetic dissimilarity of the RIL's and parents was estimated by the Mahalanobis generalized distance $\left(\mathrm{D}^{2}\right)$. The Tocher agglomerative method was used to group the genotypes into clusters of dissimilarity.

The RIL effect was significant for all evaluated traits ($\mathrm{P}<0.01$), showing the existence of genetic variability in this population. The RIL's $v s$ parents contrast was significant for the traits number of days to flowering (DF), days to harvest (DH), grain yield (YLD), and weight of 100 seeds (W100), but no significant for architecture of plants (ARC), seed flattening (H), and seed shape (J). The significance of the mentioned contrasts indicates that the phenotypic mean of RIL's differs from the mean of the parent cultivars. Coincidence between these means is expected only in the absence of epistasis. Thus, these results indicate the occurrence of additive x additive epistatic interactions for DF, DH, YLD and W100. Heritability values for the evaluated traits ranged from 82.81 to 97.09%. The 393 RIL's were grouped into 10 different groups based on the Tocher agglomerative method, using the Mahalanobis generalized distance indexes (Table 1). The traits that most contributed to the genetic dissimilarity were W100 and DF, while ARC was the less one. In geral, it was observed that the population formed by the 393 RIL's (Rudá x AND 277) presented genetic variability for all evaluated traits, what is essential for detecting associations between these traits and molecular markers in coming up efforts of genetic mapping and QTL analysis.

REFERENCES

Sanglard et al. (2013) Rudá x AND 277 RILs: a potential new core mapping population for common bean. Annual Report of the Bean Improvement Cooperative 56:23-24.

Table 1. Clustering of 393 RIL’s (Rudá x AND 277) and parent cultivars of common bean obtained by the Tocher agglomerative method based on the Mahalanobis generalized distance indexes.

Cluster	N^{1}	Rudá x AND 277 RIL's (ID Code: UFV-RA)
		$\begin{array}{llllllllllllllllll}34 & 106 & 223 & 354 & 94 & 78 & 147 & 57 & 97 & 344 & 301 & 5 & 83 & 329 & 115 & 289\end{array}$
		$\begin{array}{lllllllllllllllll}7 & 173 & 2 & 287 & 376 & 359 & 4 & 357 & 196 & 185 & 215 & 163 & 193 & 213 & 22\end{array}$
		$\begin{array}{llllllllllllllllllllll}145 & 246 & 8 & 88 & 89 & 132 & 39 & 253 & 197 & 25 & 272 & 384 & 232 & 347 & 342\end{array}$
		$\begin{array}{llllllllllllllllllll}318 & 181 & 280 & 160 & 43 & 221 & 36 & 126 & 268 & 12 & 50 & 70 & 283 & 53 & 28\end{array}$
		$\begin{array}{llllllllllllllllllllllllllll}251 & 62 & 167 & 298 & 188 & 273 & 81 & 15 & 379 & 74 & 44 & 1 & 189 & 276 & 146 & 24\end{array}$
		$\begin{array}{lllllllllllllllllllllllllll}371 & 48 & 80 & 104 & 29 & 255 & 161 & 294 & 154 & 285 & 346 & 172 & 47 & 334 & 295\end{array}$
		$\begin{array}{llllllllllllllllllllllll}93 & 10 & 111 & 284 & 351 & 116 & 308 & 31 & 303 & 368 & 73 & 151 & 239 & 237 & 123\end{array}$
I	329	$\begin{array}{lllllllllllllllllllll}319 & 49 & 124 & 138 & 90 & 19 & 82 & 137 & 26 & 122 & 358 & 121 & 217 & 134 & 21\end{array}$
		$\begin{array}{lllllllllllllllllllllllllll}92 & 292 & 32 & 263 & 370 & 17 & 369 & 153 & 341 & 264 & 219 & 233 & 11 & 377 & 150\end{array}$
		$\begin{array}{llllllllllllllllllllll}30 & 203 & 6 & 279 & 85 & 71 & 14 & 305 & 313 & 112 & 177 & 9 & 100 & 374 & 117 & 247\end{array}$
		$\begin{array}{llllllllllllllllllllllllllll}378 & 392 & 206 & 58 & 278 & 304 & 228 & 311 & 56 & 327 & 40 & 186 & 257 & 212 & 155\end{array}$
		$\begin{array}{llllllllllllllllll}393 & 290 & 363 & 210 & 176 & 37 & 338 & 199 & 345 & 183 & 227 & 336 & 238 & 105\end{array}$
		$\begin{array}{llllllllllllllllllllllll}383 & 328 & 302 & 180 & 179 & 113 & 120 & 61 & 324 & 195 & 200 & 184 & 356 & 45\end{array}$
		$\begin{array}{lllllllllllllllllllll}389 & 267 & 157 & 67 & 18 & 3 & 64 & 252 & 72 & 107 & 209 & 164 & 274 & 129 & 391\end{array}$
		$\begin{array}{llllllllllllllllllllll}271 & 330 & 367 & 386 & 16 & 321 & 339 & 192 & 109 & 375 & 312 & 230 & 229 & 198\end{array}$
		$\begin{array}{llllllllllllllllllll}158 & 352 & 118 & 382 & 385 & 286 & 98 & 55 & 244 & 372 & 260 & 59 & 136 & 54 & 220\end{array}$
		$\begin{array}{llllllllllllllllllll}306 & 235 & 226 & 99 & 38 & 102 & 51 & 148 & 182 & 159 & 362 & 320 & 214 & 256 & 315\end{array}$
		355
II	16	95 162 143 108 245 288 114 20 266 333 350 204 69 135
	16	35
III	7	$\begin{array}{llllllll}66 & 265 & 348 & 323 & 380 & 168 & 187\end{array}$
IV	2	297387
		$\begin{array}{lllllllllllllllll}152 & 194 & 366 & 275 & 241 & 208 & 125 & 332 & 75 & 248 & 335 & 249 & 299 & 234\end{array}$
V	31	$\begin{array}{llllllllllllllllllllllllllll}242 & 340 & 261 & 224 & 170 & 343 & 322 & 365 & 390 & 128 & 68 & 191 & 79 & 243 & 86\end{array}$
		165259
VI	3	2311063
VII	2	144270
VIII	1	127
IX	1	360
X	1	277
XI	-	AND 277

${ }^{\text {T }}$ Number of RIL's in each cluster.

