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SUMMARY - To determine sesame BRS 196 CNPA G4 coefficients - Kc, at semiarid conditions, an 

experiment, irrigated with 100% of crop evapotranspiration - ETc, was installed at Embrapa Cotton, 

Barbalha, CE State, Brazil, in 2012. It was measured, with a Diviner 2000® probe, at each 10 cm soil 

depth, soil volumetric water content readings in three replications. The ETc (mm d-1) was calculated by the 

soil water balance equation [ETc = I - Rs + D/C + ∆h, where I = irrigation flows (mm d-1), Rs = run-off 

flows (mm d-1), D/C = water drainage flows (mm d-1) and, ∆h = soil water storage variation (mm d-1)]. It 

was determined soil water retention curves and parameters (by Richards Plates and by Genutchen method, 

respectively) and the saturated soil hydraulic conductivity (by infiltrometer method), too. To estimate the 

reference evapotranspiration – ET0, data required by Penman-Monteith equation were obtained from the 

weather station of the Instituto Nacional de Meteorologia, Barbalha, CE, Brazil. It was concluded that: 1) 

the sesame BRS 196 evapotranspiration - ETc was higher in the developmental/floration phase; 2) during 

its planting/establishment and maturation phases the sesame suffered water deficit, and; 3) the calculated 

sesame crop coefficients - Kc varied from 0.63 in the phase I (planting/establishment) to 0.97 in the phase 

III (developmental/floration) on its cycle. 
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COEFICIENTES DE CULTIVO DO GERGELIM, UTILIZANDO EVAPOTRANSPIRAÇÃO 

DA CULTURA PELO BALANÇO HÍDRICO E, DE REFERÊNCIA POR PENMAN-

MONTEITH 

 
RESUMO - Para determinar coeficientes de cultivo - Kc do gergelim BRS 196 CNPA G4, em condições 

semiáridas, experimento irrigado com 100% da evapotranspiração da cultura - ETc foi instalado na 

Embrapa Algodão, Barbalha, CE, em 2012. Mediu-se com uma Diviner 2000®, a cada 10 cm, leituras de 

umidade em três repetições. A ETc (mm d-1) foi calculada pela equação do balanço hídrico [ETc = I - Es + 

Fv + ∆h, sendo I = irrigação (mm d-1), Es = escoamento superficial (mm d-1), Fv = fluxos 

descendentes/ascendentes de água (mm d-1) e, ∆h = variação do armazenamento (mm d-1)]. Determinou-se 

também curvas e parâmetros de retenção de água do solo (pelas Placas de Richards e pelo método de 

Genutchen, respectivamente) e a condutividade hidráulica do solo saturado (pelo método do infiltrômetro 

de anel). Para estimativa da evapotranspiração de referência, os dados da equação de Penman-Monteith 

foram obtidos da estação meteorológica do Instituto Nacional de Meteorologia, Barbalha, CE. Concluiu-se 

que: 1) a evapotranspiração do gergelim BRS 196 CNPA G4 - ETc foi maior na fase de 

desenvolvimento/floração; 2) nas fases de plantio/estabelecimento e de maturação o gergelim sofreu déficit 
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hídrico; e, 3) os coeficientes de cultivo - Kc do gergelim variaram de 0,63 na fase I 

(plantio/estabelecimento) a 0,97 na fase III (desenvolvimento /floração) do seu ciclo. 

 
PALAVRAS-CHAVE: Sesamum indicum L., fluxos de água, consumo de água. 

 

INTRODUCTION 

 

 The sesame crop, today little known in Brazil, may become an alternative for the grains 
production by the Brazilian Northeast and the Cerrados farmers, since as viewed as a functional food 

and to have good market prospects, especially its oil (GRILO JUNIOR & AZEVEDO, 2013). 

 This crop presents good yield under semi-arid conditions of the Brazilian Northeast, but it is 

believed to obtain, under irrigation, a significant increase in yield, as attested by Milani et al. (2006) 
and Uçan et al. (2007). However, for the adoption of a sesame crop irrigated system urges the need to 

conduct research about your water consumption. 

 However, according to Souza et al. (2013), only the rainfall data are not sufficient to predict the 
amount of available water in the soil for crops since these inform as only the entry of water into the 

soil. It is necessary to know also the soil water balance. 

 To calculate the soil water balance for one culture is necessary to compute the entries of soil 
water via rainfall or irrigation, i. e. infiltration from the surface, and the outputs, represented by 

internal drainage, evapotranspiration and surface run-off in a soil volume based on the crop root 

system configuration, in a certain period of time (ALLEN et al., 2006; REICHARDT & TIMM, 2012). 

The estimation of crop evapotranspiration - ETc, in turn, is based on the losses of water from the 
plant-soil system to the atmosphere through the processes of evaporation and transpiration 

(ALBUQUERQUE et al., 2002; ALLEN et al., 2006). 

 Information on sesame crop evapotranspiration - ETc and crop coefficients - Kc values that 
could subsidize irrigation management are scarce, as even the tabulated crop coefficients (Kc) values 

(initial Kc, middle Kc, end Kc), usually found in FAO reports (ALLEN et al., 2006), were obtained in 

regions outside Brazil, being more related, therefore, to a condition of sub-humid climate, not stressed 

cultures, reaching maximum production; however it is known that in actual field conditions, even in 
the same local and crop condition, these vary depending on local as well as the season conditions. For 

more arid conditions, such as the northeast semi-arid, with higher wind speeds, and many other factors 

outside of that standard condition, the use of those coefficients need corrections. 
 So, to ease the correction calculations, it is better to determine, in situ, the Kc, using methods 

that have been validated by research, such as the methods of the soil water balance to determine ETc 

and of Penman-Monteith for the estimation of ET0. The soil water balance method is characterized by 
to need a few parameters to its determination, and provides reliable values (FERNANDES et al., 

1999). The Penman-Monteith method is the recommended by the FAO (ALLEN et al., 2006) to 

provide relatively accurate and consistent ET0 results in any geographic and climatic context. 

 Thus, this study aimed to: calculate the ETc through the soil water balance method; estimate the 
local ET0 by Penman-Monteith method, and so; calculate, in situ, the crop coefficients, quotients of the 

relationship between ETc and ET0, in each phenological phase of the irrigated sesame BRS 196 CNPA 

G4 crop cycle in the semiarid soil-climate conditions. 
 

MATERIALS AND METHODS 

 
The study was conducted at Embrapa Cotton Experimental Station, located in the Barbalha 

County, CE State, Brazil (Geographical coordinates: 07o19' S, 39o18' W and 409 m above the mean 

sea level – RAMOS et al., 2009), in the Ceará South Mesoregion and the Ceará Cariri Microrregion, in 

the period from August 04th to November 7th, 2012, in an area of Fluvic Neossoil, with surface layer 
predominantly clay-loamy, of medium fertility, but with low organic matter content, whose chemical 

characterization (0-20 cm), according to Bulletin No 33/2012 of the Embrapa Cotton Soil Laboratory, 

Campina Grande, PB State, Brazil, was as follows: pH of 6.8, 95.3, 49.2, 2.8, 1.4 and 0.0 mmolc dm-3 
of calcium, magnesium, sodium, potassium and aluminum, respectively, 5.4 mg dm-3 of phosphate and 

12.3 g kg-1 of organic matter. Soil texture, in turn, at the surface layer (0-30 cm) was characterized as 

Clay Loam (33.67, 20.17 and 46.16% of sand, silt and clay, respectively) and at the 30-60 cm depth 
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layer as Sand Clay-Loam (59.98, 15.10 and 24.92% of sand, silt and clay, respectively), as sample No 

33738 and No 33739 of the UFCG Irrigation and Salinity Laboratory, Campina Grande, PB State, 

Brazil. The other soil physical characteristics of the experimental area (0-30 and 30-60 cm soil depth 
layers) are organized in Table 1. 

The region climate is, according to Koppen's classification, "CSa" type, semi- humid, with hot 

and dry summer (4-5 months), with average maximum and minimum temperatures of 31.5 °C and of 

20.5 °C, average relative humidity of 63% and average annual rainfall of 1,000 mm, distributed in the 
months from March to June (RAMOS et al., 2009), whose obtained values at the place and time of the 

experiment are shown in Figure 1. 

The water used for irrigation was of an artesian well, located near the experiment, classified as 
"C2S1" as Bulletin No 42/2012 of the Embrapa Cotton Soil and Nutrition Laboratory, Campina Grande, 

PB, Brazil, presenting medium salinity and low concentration of sodium which may be used for 

irrigation whenever there is a moderate degree of leaching and special care in soil management. 

         The experimental area measured 6.912 m2 and was irrigated based in 100% crop 
evapotranspiration, which corresponds to an applied total net water depth of 567.50 mm, with three 

replications. Soil preparation consisted of one plowing with chisel plowing. Foundation fertilization 

was taken at the bottom of the planting furrow as chemical soil analysis and recommendations for the 
culture in the region, i. e., 123 - 152 - 30 kg ha-1. It was used in foundation (on August 05th, 2012) 300 

kg ha-1 of Monoammonium Phosphate fertilizer - MAP (11% N and 46% P2O5). Nitrogen was 

fractionated into two more times (44.5% of the dose after thinning and 44.5%, 25 days later, on 
September 05th and 27th, 2012, respectively), each time applying 100 kg ha-1of Urea N fertilizer (45% 

N), while the K was all applied after thinning (on September 05th, 2012) at the rate of 50 kg ha-1 of 

Potassium Chloride (60%  K2O). Fertilization coverage was made in the lateral furrows of planting 

rows. Sowing was held on August 4th, 2012 with five seeds per hill and at an average depth of 2 cm, 
using the BRS 196 CNPA G4 sesame cultivar (ARRIEL et al., 2010), 0.70 x 0.20 spaced, with final 

density of 8-10 plants per meter of row. The thinning was done in 2 steps: first, when plants had 4 

leaves (pre-thinning) and the second when 15 cm tall (final thinning). The weed control was 
performed with 3 hand weedings. 

  Irrigations, in the total number of 22 in the cycle, were performed using conventional sprinkler 

system, considering a 75% irrigation system efficiency, using sprinklers with 5.0 x 4.6 mm nozzle, 
with a 0.34 MPa service pressure, 18 x 12 m spaced, with a 10.54 mm h-1 average precipitation, 

applying water until 0.40 m, which according to Amaral & Silva (2008), corresponds to the required 

soil profile effective depth by the root system of the sesame. Before planting, irrigations were 

performed in the entire area in order to bring the soil at field capacity and promote germination. Later, 
irrigations were performed every 3 and 4 days, due to clay-loamy soil textural characteristics of the 

area favoring slow water infiltration. From the beginning of the maturation stage (67 DAE) to the 

cycle finishing, irrigations became weekly. 
  The water application uniformity tests were performed on September 9th, 2012 (clean ground, 

before plants emergence) and on September 28th, 2012 (50 DAE – developmental/floration phase) in 

four replicates per date, using 9 rain gauges per test, equally spaced (3m x 3m) within the area covered 

by 4 sprinklers, as Gomes (1994). With the collecting of the measured water volume of each rain 
gauge, obtained using a graduated recipient in millimeters, it was possible to determine the average 

precipitation sprinkler (mm h-1) by dividing the average collected volume (mm) per gauge by the 

irrigation time (in hours). The average precipitation sprinkler considered in the irrigation calculations 
was derivated from all these tests and repetitions. 

  At each irrigation event, the water replacement (ETc = ET0 * Kc) was a function of ET0 

estimated by the Penman-Monteith method, from respective period, using weather data from automatic 
weather station of the Instituto Nacional de Meteorologia – INMET, in Barbalha, CE State, Brazil, 

distant 500 m from experimental area and, of crop coefficients (Kc) given in FAO-56 (ALLEN et al., 

2006). The Kc average for the different stages of growth, were as follows: Phase I – 

planting/establishment - the period between emergence and 10% ground cover (1-5 DAE): 0.63. The 
values around average were obtained by the simplified equation by Albuquerque et al. (2002); Phase II 

- growth - period 10% ground cover to the beginning of flowering (6-32 DAE): 0.79. The values 

around average were obtained by the equation Kc = 0.0147 + 0.5125 * DAE; Phase III – 
developmental/floration - the period between flowering and early maturation (33-66 DAE): 1.10; and, 
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Phase IV - maturation - the period from early to late maturation (67-90 DAE): 0.25. The values around 

average were obtained by the equation Kc = -0.0425 + 4.075 * DAE. 

  The period of study of the soil water balance was from August 10th to November 7th, 2012, 
totaling 90 days and it was divided into 13 sub-periods, 1 with 9 days, 4 with 8 days, 5 with 7 days, 1 

with 5 days and 2 with 4 days. The non-uniformity of the subperiods in number of days was due to soil 

volumetric water readings present some gaps. 

The soil water balance was performed according to the methodology presented by Reichardt & 
Timm (2012), Equation (1), for the 0 to 0.50 m soil depth, using data of daily readings (mm 10 cm-3 of 

soil) at each 0.10 m soil depth (at 0.10, 0.20, 0.30, 0.40, 0.50 and 0.60 m) of access Diviner 2000® 

probe tubes (SENTEK, 2000), randomly installed in the plots. The Diviner 2000® probe calibration 
equation is shown in Figure 2. Before the readings, the probe normalization it was done through 

readings in air and water. 

 

phSFRCDIPETc s  /)(                                                           (1) 

where: ETc – crop evapotranspiration (mm); P - rainfall (mm), zero in driving time from work 

(RAMOS et al., 2009); I - irrigation (mm); D/C – deep drainage (-) or capillary rise (+) (mm) below 

the root zone contingency of crop; Rs – run-off flows (mm), null given the area is plan; SF  - sub-

surfaces flows (mm) (minimum values usually being considered only on soils under conditions of high 
slope); Δh - soil water storage variation (mm) in the operating area of the roots (0-40 cm for Sesame) 

and, Δp - plant water content variation (mm). 

The deep drainage or capillary rise components (D/C) of soil water were calculated by the 

Darcy-Buckingham equation [Equation (2)], simplified by Reichardt & Timm (2012): 
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where:  K  is the unsaturated soil  hydraulic conductivity (mm d-1), depending on soil volumetric 

water content; and, 
z
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, the soil water total potential gradient.  

The soil water storage variation (mm), determined by the difference of the soil volumetric water 

content values, obtained at the initial and the final time of each considered period, was measured at 0 

to 0.40 m depth (0.0 cm to L), effective depth sesame roots, according to Equation (7), and the 
variation of the deep drainage and capillary rise flows (D/C - mm) in the layer of 0.30 to 0.50 m 

according to equations (2) to (6). The average unsaturated soil hydraulic conductivity  K , the soil 

water total potential variation ( tH ) and the soil water storage variation (Δh) were obtained by 

numerical integrations using the trapezoidal graphical method (REICHARDT & TIMM, 2012):  
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where:  K  is the unsaturated soil  hydraulic conductivity (mm d-1), K0 is the saturated soil  

hydraulic conductivity (mm d-1), L is the considered layer (cm) for the soil water balance (effective 
depth crop roots), z (negative values) is the multiple of the depths (cm) where the volumetric soil 

water content (m3 m-3) are measured, ftzL )(  is the volumetric soil water content (m3 m-3) at 

L - z (cm) on final time, ftzL )(  is the volumetric soil water content (m3 m-3) at L + z (cm) on 

final time,  itzL )(   is the volumetric soil water content (m3 m-3) at L - z (cm) on initial time, 

itzL )(   is the volumetric soil water content (m3 m-3) at L + z (cm) on initial time, tH  is the 

soil water total potential variation at L - z  to L + z (mm) soil depth, itzLH )(   is the soil water total 

potential (mm) at L - z (cm) soil depth on initial time, ftzLH )(   is the soil water total potential 

(mm) at L - z (cm) soil depth on final time, itzLH )(   is the soil water total potential (mm) at L + z 

(cm) soil depth on initial time, ftzLH )(   is the soil water total potential (mm) at L + z (cm) soil 

depth on final time, z is the depth variation between L - z and L + z (cm) for the deep drainage and 

capillary rise flows, Z  is the depth variation between 0,0 – L (cm) for the soil water storage 

variation,   is the symbolic notation of the mean, ftL)...( 0   are the volumetric soil water 

content (m3 m-3) measured at each z, from 0,0 to L soil depth (cm) on final time, itL)...( 0  are the 

volumetric soil water content (m3 m-3) measured at each z, from 0,0 to L soil depth (cm) on initial 

time, || m  (absolute values) is the matricial potential (kPa), s is the saturated volumetric soil 

water content (m3 m-3) (m3 m-3), r is the residual volumetric soil water content (m3 m-3) and, α, m 

and n are water soil retention curve parameters (dimensionless) since  < <1,  <m<1 and n>1, 

according van Genutchen (1980) model.  
The water soil retention curves, obtained from laboratory and field soil matricial potential (kPa) 

and volumetric water content (m3 m-3) data at 0-30 and 30-60 cm depths (Figure 3) were determined at 

the UFCG Irrigation and Salinity Laboratory, Campina Grande, PB, Brazil, using Richards plates. The 

water soil retention curves data were fitted by polynomial regression, as van Genuchten (1980) model, 
determined by SWRC software (Soil Water Retention Curve - Beta 3.0 version -. DOURADO NETO 

et al., 2000), with the obtained parameters and the soil saturated hydraulic conductivity (K0) values, 

determined in the experimental area, by the method of infiltrometer method, organized in Table 2. 
To estimate the saturated soil hydraulic conductivity - K0 were held on October 17th 2012, three 

infiltration tests at different points of the experimental area with 25 and 50 cm diameter infiltrometers, 

both with 30 cm high, 15 cm buried in the ground surface as Bernardo et al. (2009). The Basic 
Infiltration Rate - BIR (cm h-1), i. e., the water infiltration rate into the soil at the time that it reaches 

the BIR, a more or less constant value of it which can be considered equal to the saturated soil 

hydraulic conductivity was obtained from Equation (8): 

BIR time (min) = 600 * ABS (n)                                                                                 (8) 
Since n is one of the constants of Potential Equation [equation (9)] that describes the soil water 

infiltration rate (IR), whose curve can be obtained by plotting the data of IR "versus" the accumulated 

time: 
IR = R T n                                                                                                                      (9) 
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where IR = is the soil water infiltration rate (cm h-1), R = soil dependente constant 

(dimensionless), T = is the BSI time (min) and, n = soil dependente constant that varies from 0 to 1 

(dimensionless). 
The reference evapotranspiration was determined in the 100% crop evapotranspiration level by 

FAO-Penman-Monteith method, as equations (10) and (11) (ALLEN et al., 2006): 

)34,01(
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where: ETo is the reference evapotranspiration (mm d-1); Rn is the net radiation at crop surface (MJ m-2 

d-1); G is the soil heat flux density (MJ m-2 d-1), considered insignificant when using daily calculations; 
T is the air temperature at 2 m height (ºC); U2 is the wind speed at 2 m heigh (m s-1); es is the 

saturation vapor pressure (kPa); ea is the current vapor pressure (kPa); Δ is the slope vapor pressure 

curve (kPa ºC-1); γ is the psychrometric constant (kPa ºC-1).  
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The psicrometric coefficient (γ) é considerado constante, γ = 0,0622 kPa oC-1, is considered 

constant, γ = 0,0622 kPa oC-1, since it is a function of atmospheric pressure, which varies very little 

throughout the year (95.03 kPa), and also of the water evaporation latent heat, that is little affected by 
temperature, being recommended an average value of 2.45 MJ kg-1. 

  The crop coefficients – Kc, were obtained for each sesame BRS 196 CNPA G4 phenological 

phase, by the relationship between the crop evapotranspiration (ETc) values, estimated by the soil 
water balance (REICHARDT & TIMM, 2012), and the reference evapotranspiration (ET0) values, 

determined by the FAO-Penman-Monteith method [Equation (12)] (ALLEN et al., 2006), i. e.: 

                                                  
0ET

ETc
Kc                                                                               (12) 

 

RESULTS AND DISCUSSION 
 

The water balance components in the soil cultivated with sesame BRS 196 CNPA G4 during the 

study period are presented in Table 3 and Figure 4 . 

The sesame evapotranspiration (ETc) was the highest in the same subperiods 
(development/floration phase) on which major irrigation volumes occurred. This higher value of ETc 

under major irrigation volumes occur due to increased evaporation in the surface layers, as 

observations of Cruz et al. (2005). It is still observed in subperiods 11e 13 (maturation phase) that the 
ETc values are very low because few irrigations occurred on these subperiods. The highest ETc values 

on the growth and development/floration phases can be explained by the fact that, according to Weiss 

(1983), in sesame, the maximum water absorption occurs at flowering, gradually decreasing thereafter, 

leading thus to an increase in evapotranspiration at this phase. Moreover, on these phases and on 
maturation, greater irrigation volumes of irrigation occurred, which, as already mentioned, caused an 

increase in ETc. The ETc decreasing at end of cycle probably occurred, according to Lima et al. 

(2006) due to leaves senescence, reducing the leaf area and, thus the exposed area to transpiration 
(Table 3, Figure 4). 

The average ETc results in the experiment ranged from 1.3 to 14.5 mm d-1, very different from 

those obtained by Chandrakar et al. (1994), in the Chhttisgarth region, India, in a sesame experiment 
under irrigation and by Amaral & Silva (2008), with the own sesame BRS 196 CNPA G4, irrigated 

too, in Barbalha, CE, Brazil. 
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The soil water storage variation (Δh) showed positive values in subperiods 2, 3, 5, 6, 8, 9 and 12 

with 3.7, 0.5, 14.2, 14.6, 9.2, 15.0 and 20.3 mm d-1, respectively. The subperiods 1, 4, 7, 10, 11 and 13 

showed negative values with -3.7, -6.1 , -11.7, -6.1, -14.6 and -10.9 mm d-1, respectively (Table 3). 
The soil water drainage rates (D/C) values were positive in subperiods 1 to 6 - during 

planting/establishment and growth phases (totaling 4.5 mm), i. e., capillary rise (C), and negative in 

subperiods 7 to 13 - development/floration and maturation phases (totaling -2.5 mm), indicating deep 

drainage (D). For the development/floration phase, where the largest amount of irrigation (53.2 mm) 
occurred, was provided higher deep drainage values, despite soil texture of the area having low 

infiltration capacity (Table 3, Figure 4), which disagrees with the results of Azevedo et al. (2006), 

where the increases of the irrigation water amounts resulted in similar increases of the soil water 
drainage rate. The low soil water drainage rate values found in this study may be due to the low 

hydraulic conductivity (Table 3) or, according to Fernandes et al. (1999) to`the normal difficulties 

encountered in the estimation of this term of the soil water balance equation. 

It is also observed in Figure 4, that the period of highest sesame water requirement occurred in 
the development/floration phase, as agreed by Weiss (1983), with a total of 53.2 mm, with the lower 

water requirement ocurring on planting/establishment phase with 29.6 mm. The applied water total 

volume was 567.5 mm. Interesting was the volume demanded by the growth phase to be smaller than 
the one of maturation phase, but Uçan et al. (2007) point out that the sesame is tolerant to lack of 

water in the soil during growth phase. This total irrigation amount is within of the suggested by Milani 

et al. (2006) who claim that sesame is very productive in regions with rainfall between 400-650 mm . 
Regarding to the ET0 values, they were superior to ETc during planting/establishment and 

maturation phases, but being much larger in this second phase, indicating that on these phases sesame 

suffered water deficit, also evidenced by the negative soil water storage values (Figure 4, Table 3). 

 Finally, from the relationship between the ETc values, calculated by the soil water balance, and 
the ET0 values, estimated by the Penman-Monteith method, were obtained, in situ, for each sesame 

BRS 196 CNPA G4 phenological phase, the respective crop coefficients - Kc which are distributed in 

Table 4. 
Notably, the sesame BRS 196 CNPA G4 Kc value for phase III (development/floration phase) 

(Table 4) obtained in this study, approaches for less to the reported by Allen et al. (2006) and, for 

more, to the found by Amaral & Silva (2008). The Kc value of the phase IV (maturation phase) (Table 
4), in turn, was nearly twice that found by Allen et al. (2006). According Albuquerque et al. (2002) 

and Allen et al. (2006), even for the same crop, the Kc value is not constant, it changes depending on 

climatic as well as season conditions and crop characteristics throughout its cycle. 

 

CONCLUSIONS 

 

1. The sesame BRS 196 CNPA G4 evapotranspiration was higher in the development/floration phase, 
and smaller during planting/establishment and maturation ones;  

2. During planting/establishment and maturation phases, the sesame BRS 196 CNPA G4 suffered 

water deficit, denoted by the much larger values of reference evapotranspiration in relation to the crop 

evapotranspiration and by the negative values of soil water storage, and;  
3. The sesame BRS 196 CNPA G4 coefficients values varied from 0.63 in phase I 

(planting/establishment) to 0.97 in  phase III (development/floration) of its cycle. 
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Table 1. Soil physical characteristics in the experimental area. Barbalha. CE. Brazil. 2012.  

Caracteristics 0 a 30 cm 30 a 60 cm 

Bulk density (g.cm-3) 
Global density (g.cm-3) 

Porosity (%) 
Natural water content (%) 
Water content in 0.10 atm (%) 
Water content in 0.33 atm (%) 
Water content in 1.00 atm (%) 
Water content in 5.00 atm (%) 
Water content in 10.0 atm (%) 
Water content in 15.0 atm (%) 

Available water content (%) 

1.74 
2.72 

35.82 
0.86 

45.90 
35.10 
28.72 
22.73 
20.27 
18.55 

16.55 

1.44 
2.72 

47.04 
0.65 

32.10 
25.10 
17.76 
12.55 
11.61 
9.98 

15.12 

Samples No 33738 and 33739 respectively of the UFCG Irrigation and Salinity Laboratory. Campina Grande. PB. Brazil. 
 

 
Figure 1. Average values of maximum (T_max) and minimum (T_min) temperatures and of maximum (RH_max) and 
minimum (RH_min) air relative humidity. obtained at the place and time of the experiment. Barbalha. CE. Brazil. 2012. 
 
Table 2. Soil water retention curves parameters and soil saturated hydraulic conductivity (K0 - mm d-1) determined at 10 to 50 
cm depths. Barbalha. CE. Brazil. 2012. 

Parameters Depths (cm) 

10 20 30 40 50 

Α 1.4690 1.4690 1.4690 0.0693 0.0693 
M 0.0947 0.0947 0.0947 0.0728 0.0728 
N 2.9170 2.9170 2.9170 5.3548 5.3548 
Θr 0.0950 0.0950 0.0950 0.0560 0.0560 

Θs 0.8600 0.8600 0.8600 0.3240 0.3240 

K0 19.070 19.070 19.070 19.070 19.070 
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Figure 2. Diviner 2000® probe calibration equation (SENTEK. 2000). 
 

Table 3. Water balance components in soil cultivated with sesame BRS 196 CNPA G4 during the period from August 10th to 

November 7th . 2012. Barbalha. CE. Brazil. 
Subperíodos I (mm d-1) ∆h (mm d-1) D/C (mm d-1) ETc (mm d-1) 

- 
1 
2 
3 
4 
5 
6 

7 
8 
9 
10 
11 
12 
13 

39.5 
19.8 
15.8 
31.6 
44.7 
35.6 
94.8 

34.2 
52.7 
54.0 
30.3 
28.9 
54.0 
31.6 

- 
-3.7 
3.7 
0.5 

-6.1 
14.2 
14.6 

-11.7 
9.2 

15.0 
-6.1 

-14.6 
20.3 

-10.9 

- 
3.8 
4.5 
8.2 

11.8 
10.7 
6.4 

-3.4 
-3.8 
-4.2 
-4.6 
-3.7 
-2.8 
-2.4 

- 
5.0 
6.0 
5.0 
7.2 
7.6 

14.5 

2.7 
8.3 
9.3 
3.9 
1.3 

10.2 
2.0 

I = irrigation; ∆h = soil water storage variation; D/C = deep drainage (negative values) or capillary rise (positive values) 
flows; ETc = crop evapotranspiration. 
 

 
Figure 3. Soil water retention curves at 0-30 and 30-60 cm depths. Barbalha. CE. Brazil. 2012. 
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Figure 4. Irrigation (I). crop (ETc) and reference (ET0) evapotranspiration. soil water storage (∆h) and soil drainage rates 
(D/C) daily averages for the different sesame BRS 196 CNPA G4 phenological phases. Barbalha. CE. Brazil. 2012. 
 
Table 4. Kc mean values for sesame BRS 196 CNPA G4 phenological phases in the Barbalha. CE. Brazil. conditions. 2012. 

Phenological phase Period (DAE) Duration (Days) Kc 

I - Planting/Establishment 
II - Growth 
III - Development/Floration 
IV – Maturation 

1to 5 
6 to 32 
33 to 66 
67 to 90 

5 
27 
34 
24 

0.63 
0.83 
0.97 
0.56 

 


