SELEÇÃO DE POPULAÇÕES SEGREGANTES DE FEIJOEIRO-COMUM CARIOCA COM ALTOS TEORES DE FERRO E ZINCO

SELECTION OF CARIOCA COMMON BEAN SEGREGATING POPULATIONS WITH HIGH OF IRON AND ZINC CONTENT

Poliana R. C. Di Prado¹; Helton S. Pereira^{2**}, Patrícia G. S. Melo^{3*}, Leonardo C. Melo⁴, Maria José Del Peloso⁵, Thiago L. P. O. Souza⁶, Saulo M. Martins⁷, Felipe J. Almeida⁸

Introdução. O feijão-comum é a leguminosa mais importante no consumo humano direto (Beebe et al., 2000) e o Brasil se destaca como um dos principais produtores mundiais de feijão-comum. É um alimento rico nutricionalmente, pois possui os nutrientes essenciais para o homem, como proteínas, minerais (ferro, zinco, cobre, cálcio), vitaminas (principalmente do complexo B), carboidratos e fibras. A quantidade desses nutrientes varia dependendo da espécie e do tipo de feijão. Essa diversificação de elementos se explorada de maneira eficiente, pode levar ao lançamento de cultivares com maiores teores desses elementos: proteínas, fibras, ferro e zinco. A deficiência de ferro e zinco atinge a população de todo o mundo de países ricos e pobres (De Benoist et al., 2009). O ferro é essencial à formação de hemoglobina e a sua deficiência causa a anemia, o zinco é necessário na maturação hepática da vitamina A, atua na maturação sexual, na fertilidade e na reprodução, e sua deficiência provoca atraso no crescimento, retardamento da maturação sexual, perda de apetite e intolerância a glicose (Ribeiro et al., 2008). O enriquecimento nutricional dos alimentos por meio de melhoramento clássico não causa problemas na alteração da cor e sabor dos alimentos. Desta forma o consumidor terá em sua dieta um produto de melhor qualidade nutricional, sem modificações na forma de preparo e nas características organolépticas do alimento (Jost et al., 2009). A hibridação é uma importante técnica utilizada no melhoramento que permite a recombinação da variabilidade existente, gerando populações segregantes com potencial para o desenvolvimento de novas cultivares (Ramalho et al., 1993). Na obtenção dessas populações é importante a avaliação dos genitores por meio do desempenho de suas progênies. Para isso têm sido utilizados os cruzamentos dialélicos, que estimam a capacidade de combinação dos genitores, ou seja, a capacidade de se combinarem em híbridos que produzam populações segregantes promissoras. Na cultura do feijoeiro-comum essa técnica vem sendo empregada com sucesso, mas ainda não se tem trabalhos publicados utilizando-a para obtenção de cultivares com altos teores de ferro e zinco. O objetivo deste trabalho foi obter genitores e populações segregantes de feijoeirocomum com potencial para altos teores de ferro e zinco.

Material e Métodos. Foram utilizadas populações segregantes na geração F₂, obtidas a partir de cruzamentos em esquema de dialelo completo entre seis genitores. Os genitores utilizados foram: três cultivares altamente adaptadas às condições de cultivo brasileiras, com alta produtividade e outros caracteres agronômicos desejáveis e com altos teores de ferro e zinco nos grãos (BRS Cometa, BRS Requinte e BRSMG Majestoso) e três linhagens introduzidas de outros países, com baixa adaptação as condições de cultivo no Brasil, mas com altos teores de ferro e zinco e superiores aos das cultivares brasileiras (Porto Real, G 2358 e G 14378). Os cruzamentos foram realizados em Santo Antônio de Goiás- GO (maio/2011), seguindo um esquema dialélico. A geração F₁ foi avançada em casa de vegetação em fevereiro de 2012. O experimento, com as populações F₂, foi constituído por 15 tratamentos e avaliado em Santo Antônio de Goiás, safra de inverno (maio/2012). O delineamento utilizado foi de blocos casualizados com parcelas de 4 linhas ¹ Doutoranda, Programa de Pós-graduação em Genética e Melhoramento de Plantas, Universidade Federal de Goiás, Goiânia, Goiás,

Brasil. <u>polianacarloni@gmail.com</u>

² Pesquisador da Embrapa Arroz e Feijão, Santo Antônio de Goiás, Goiás, Brasil.**Co-orientador, helton.pereira@embrapa.br

³ Professora Associada- Escola de Agronomia- Setor de Melhoramento de Plantas, Universidade Federal de Goiás, Goiânia, Goiás, Brasil *Orientadora. pgsantos@gmail.com

⁴ Pesquisador da Embrapa Arroz e Feijão, Santo Antônio de Goiás, Goiás, Brasil. leonardo.melo@embrapa.br

⁵ Pesquisadora da Embrapa Arroz e Feijão, Santo Antônio de Goiás, Goiás, Brasil. <u>mariajose.peloso@embrapa.br</u>

⁶ Pesquisador da Embrapa Arroz e Feijão, Santo Antônio de Goiás, Goiás, Brasil. thiago.souza@embrapa.br

⁷ Mestrando, Programa de Pós-graduação em Genética e Melhoramento de Plantas, Universidade Federal de Goiás, Goiánia, Goiás, Brasil. munizsaulo1990@hotmail.com.

⁸ Graduando, Agronomia, Universidade Federal de Goiás, Goiânia, Goiás, Brasil. felipejunioufg@gmail.com

de 4,0 metros, com espaçamento de 0,5 metros entre linhas, e 3 repetições. Foram colhidas sementes das duas linhas centrais para avaliação dos teores de ferro e zinco dos grãos. Os teores de ferro e zinco (mg/kg) foram determinados em triplicata por digestão ácida da matéria orgânica (com mistura nitro-perclórica 2:1), conforme técnica de espectrofotometria de absorção atômica por chama adaptada da Association of Official Analytical Chemists (1995). Foi realizada análise de variância para cada um dos caracteres e teste de médias de Scott Knott à 10% de probabilidade. O método de análise dialélica utilizado foi o método IV proposto por Griffing (1956), no qual são estimadas as capacidades geral (CGC) e específica (CEC) de combinação de cada um dos genitores e entre eles. As significâncias das CGC e CEC foram testadas de acordo com modelo de Ramalho et al. (1993). As análises estatísticas foram realizadas com o auxílio do aplicativo GENES (Cruz, 2007).

Resultados e Discussão. Houve diferença significativa entre as populações para teores de ferro e zinco, à 1% de probabilidade, pelo teste F. O coeficiente de variação experimental (CV%), que avalia a qualidade do experimento, apresentou valores baixos indicando boa precisão experimental, sendo de 7,42% para teor de ferro e 4,98% para teor de zinco (Tabela 1). A média para teor de ferro foi de 53,33 mg/kg, variando de 32,60 à 89,90 mg/kg. Para o caráter teor de zinco as populações avaliadas apresentaram média de 39,30 mg/kg, variando de 34,20 a 47,50 mg/kg. Na análise dialélica para teor de ferro e teor de zinco, houve diferenças significativas para capacidade geral (CGC) e específica (CEC) de combinação (Tabela 1). Analisando os valores de CGC para cada genitor (Tabela 2) observa-se que a maior estimativa de CGC foi da linhagem G 2358, com valores de 10,35 e 3,20 para teor de ferro e zinco respectivamente. Essa linhagem apresenta baixa adaptação às condições de cultivo brasileiras. Outro genitor, o BRS Requinte, pertence ao grupo das cultivares adaptadas as condições brasileiras, apresentou valor positivo e significativo de CGC (1,81) para teor de ferro. Para o caráter teor de zinco, as cultivares (BRS Cometa, BRS Requinte e BRSMG Majestoso) e a linhagem Porto Real obtiveram valores não significativos para CGC; já a linhagem G 1438 obteve valor significativo e negativo para esse caráter.

De acordo com Ramalho et al. (1993) a significância da capacidade específica de combinação (CEC) indica que os cruzamentos foram heterogêneos, exibindo assim comportamentos diferentes do que era esperado com base nas capacidades geral de combinação (CGC). A maior estimativa de CEC foi para a população BRS Requinte x G 2358, 16,66 para teor de ferro e média de 82,17 mg/kg; e 3,99 para teor de zinco com média de 45,70 mg/kg (Tabela 3). Essa população reúne características ideais que são altas CGC dos genitores, alta CEC e média tanto para teor de ferro como para zinco. A população BRS Cometa x G 1438 obteve alta CEC para teor de ferro (9,29) média de 54,77 mg/kg e valores intermediários de CEC para teor de zinco (0,32) com média de 38,00 mg/kg. Outra população promissora, para aumentar os teores de zinco, foi BRS Cometa x BRSMG Majestoso, com CEC de 2,57 e média 40,70 mg/kg; para teor de ferro essa população apresentou CEC de 3,87 e média 48,23 mg/kg. Essas populações reúnem ótimas características mostrando grande potencial para serem conduzidas em programa de melhoramento que tenham como objetivo lançar cultivares com altos teores de ferro e zinco.

Tabela 1. Resumo da análise dialélica para altos teores de ferro e zinco em populações de feijoeiro-comum carioca, na geração F₂. Safra de inverno (maio/2012) Santo Antônio de Goiás-GO.

		Teor de Ferro		Teor de Zinco			
Fonte de Variação	GL	QM	Probabilidade	QM	Probabilidade		
POPULAÇÕES	14	347,28	0,0000	24,50	24,50 0,0000		
CGC	5	381,61	0,0000	30,43	0,0001		
CEC	9	328,21	0,0000	21,21	0,0002		
RESÍDUO	28	15,64		3,83			
Média (mg/kg)			53,33		39,30		
Mínimo (mg/kg)			32,60		34,30		
Máximo (mg/kg)			89,90		47,50		
CV%			7,42		4,98		

CGC= capacidade geral de combinação, CEC= capacidade específica de combinação.

Tabela 2. Estimativas de capacidade geral de combinação dos genitores de um dialelo de feijoeirocomum carioca, na geração F₂. Safra de inverno (maio/2012) Santo Antônio de Goiás-GO.

, 0 3 2	Capacidade Geral de Combinação			
Genitor	Teor de Ferro	Teor de Zinco		
BRS COMETA	-5,38 [*]	-0.59^{NS}		
PORTO REAL	$-0.73^{ m NS}$	-0.19^{NS}		
BRS REQUINTE	1,81*	-0.79^{NS}		
BRSMG MAJESTOSO	-3,59 [*]	-0.58^{NS}		
G 2358	10,35*	3,20*		
G 14378	-2,47*	-1,03*		

^{*}Significativa, NS não significativa.

Tabela 3. Média das 15 populações para teor de ferro zinco, com as respectivas capacidades específicas de combinação (CEC) de um dialelo para altos teores de ferro e zinco em feijoeirocomum carioca, na geração F₂. Safra de inverno (maio/2012) Santo Antônio de Goiás-GO.

POPULAÇÃO	Teor de Ferro	CEC	Teor de Zinco	CEC
BRS Cometa x Porto Real	52.00 ^b	4.781 [*]	35.57 ^c	-2.93*
BRS Cometa x BRS Requinte	34.03 ^b	-15.73 [*]	38.47 ^c	0.56^{NS}
BRS Cometa x BRSMG Majestoso	48.23°	3.87^{*}	$40.70^{\rm b}$	2.57^{*}
BRS Cometa x G 2358	56.10^{b}	-2.20^{NS}	41.37 ^b	-0.53^{NS}
BRS Cometa x G 14378	54.77 ^b	9.29^*	38.00^{c}	0.32^{NS}
Porto Real x BRS Requinte	57.90^{b}	3.48^{*}	36.47 ^c	-1.83*
Porto Real x BRSMG Majestoso	48.43 ^c	-0.57^{NS}	$40.77^{\rm b}$	2.24^{*}
Porto Real x G 2358	$59.07^{\rm b}$	-3.88*	43.83 ^a	1.52^{*}
Porto Real x G 14378	46.33°	-3.79*	39.07 ^c	0.99^{NS}
BRS Requinte x BRSMG Majestoso	42.63°	-8.92*	35.83 ^c	-2.08*
BRS Requinte x G 2358	82.17 ^a	16.66*	45.70^{a}	3.99^{*}
BRS Requinte x G 1438	57.20^{b}	4.52^{*}	36.83 ^c	-0.63^{NS}
BRSMG Majestoso x G 2358	62.63 ^b	2.53^{NS}	38.40^{c}	-3.51*
BRSMG Majestoso x G 14378	50.37 ^c	3.10^{*}	38.47 ^c	0.78^{NS}
G 2358 x G 14378	48.10^{c}	-13.11*	40.00^{b}	-1.46 ^{NS}

Média seguidas pela mesma letra, não diferem pelo teste de médias de Scott Knott à 10% de probabilidade. CEC= capacidade específica de combinação *significativa, ^{NS} não significativa.

Conclusão. Os genitores e as populações avaliadas possuem potencial para geração de linhagens com altos teores de ferro e zinco. Os melhores genitores foram G 2358, BRS Requinte e Porto Real. As melhores populações foram BRS Requinte x G 2358, Porto Real x G 2358 e Porto Real x BRS Requinte.

Agradecimentos. À Universidade Federal de Goiás pela oportunidade de estudo, a Embrapa Arroz e Feijão e ao programa Harvest Plus pelo financiamento do trabalho. A FAPEG pela bolsa de estudos a primeira autora e ao CNPq pela concessão de bolsa de produtividade em desenvolvimento tecnológico e extensão inovadora ao segundo, terceiro e quarto autores.

Referências.

BEEBE, S.; GONZALEZ, A. V.; RENGIFO, J. Research on trace minerals in the common bean. **Food and Nutrition Bulletin**, v. 21, n. 4, p. 387-391, 2000.

DE BENOIST, B.; MCLEAN, E.; EGLL, I.; COGSWELL, M. Worldwide prevalen of anemia **1993-2005**. Global Database Anaemia. 2009. Disponível em: http://whqlibdoc.who.int/publications/2008/9789241596657_eng.pdf>. Acesso em: 20 jun 2013.

GRIFFING, B. Concept of general and specific combining ability in relation to diallel crossing systems. **Australian Journal of Biological Science**, Melborne, v. 9, p. 463-493, 1956.

JOST, E.; RIBEIRO, N. D.; CERUTTI, T.; POERSCH, N. L.; MAZIERO, S. M. Potencial de aumento do teor de ferro em grãos de feijão por melhoramento genético. **Bragantia**, v. 68, p. 35-42, 2009.

RAMALHO, M.A.P.; SANTOS, J.P.; ZIMMERMANN, M.J.O. Genética quantitativa em plantas autógamas: aplicações ao feijoeiro. Editora UFG, Goiânia, 1993. 271 p.

RIBEIRO, N. D.; JOST, E.; CERUTTI, T.; MAZIERO, S. M.; POERSCH, N. L. Composição de microminerais em cultivares de feijão e aplicações para o melhoramento genético **Bragantia**, Campinas, v. 67, n. 2, p. 267-273, 2008.