CNMS CONGRESSO NACIONAL DE MILHO E SORGO CONGRESSO NACIONAL DE MILHO E SORGO

XXX CONGRESSO NACIONAL DE MILHO E SORGO

"Eficiência nas cadeias produtivas e o abastecimento global"

Performance fotossintética em dois genótipos de milho contrastantes para a tolerância ao déficit hídrico

<u>Paulo César Magalhães⁽¹⁾</u>; Mariana Melo Diniz Gomes⁽²⁾; Carlos César Gomes Júnior⁽²⁾; Junia Clarissa Alves de Souza⁽³⁾; Alyne Oliveira Lavinsky⁽⁴⁾

(1) Pesquisador Embrapa Milho e Sorgo; paulo.magalhaes@embrapa.br

RESUMO: A ocorrência de déficit hídrico na cultura do milho é motivo de grande preocupação na agropecuária, uma vez que esse cereal é a base alimentar para humanos e para ração de suínos e aves. Nesse trabalho, buscou-se avaliar diferenças no que se diz respeito à eficiência fotossintética em dois genótipos de milho contrastantes para a tolerância ao déficit hídrico (2B710-sensível e DKB390-tolerante) cultivados sob diferentes níveis de água no solo (capacidade de campo - CC, e déficit hídrico – DH), mediante avaliação de trocas gasosas e parâmetros derivados de curvas de resposta de fotossíntese em reposta a [CO₂] no cloroplasto. Com a imposição do DH, plantas de genótipos reduziram fotossíntese, ambos condutância estomática, taxa máxima carboxilação limitada pela PEPC e pela taxa de transporte de elétrons, enquanto a fotorrespiração aumentou mesmo com a manutenção de uma elevada [CO₂] no sítio ativo da RUBISCO e PEPC, e a taxa máxima de carboxilação limitada pela RUBISCO manteve-se inalterada. Contudo. o genótipo DKB390 apresentou melhores respostas em face ao DH, quando comparado ao 2B710; fato acoplado a uma adicional limitação na taxa fotossintética pela condutância do mesofilo apenas em plantas desse último genótipo sob DH.

Termos de indexação:

Zea mays L., fotorrespiração, condutância mesofílica

Introdução

Evidencias recentes apontam que, em adição ao fechamento dos estômatos, limitações mesofílicas e bioquímicas podem ocasionar decréscimo na taxa fotossintética (A) em plantas (Grassi e Magnani, 2005). Em folhas de plantas C4, o CO_2 é inicialmente fixado pela fosfoenolpiruvato carboxilase (PEPC), para formar um ácido com

quatro carbonos (ou ácido málico ou ácido aspártico) nas células do mesofilo, o qual é transportado para a bainha do feixe vascular, liberando o CO₂, que é então utilizado nas reações do ciclo de Calvin pela Ribulose 1,5 bisfosfato carboxilase/oxigenase (RUBISCO).

Nas condições atmosféricas atuais, em folhas hidratadas de plantas C4 a relação entre as concentrações de CO₂ e O₂ ([CO₂]/[O₂]) nas células da bainha do feixe vascular é muito maior do que nas células do mesofilo (Maroco et al., 1997), o que reduz a atividade oxigenase da RUBISCO, e em última análise, a fotorrespiração (FR), um processo dispendioso e que não contribui para o acúmulo de matéria seca da planta. Registra-se, inclusive, que o O₂ é requerido para produção extra de ATP necessária para o mecanismo de concentração de CO₂ (Maroco et al., 1997). Assim, a inevitável diminuição na A em plantas C4 cultivadas sob déficit hídrico (DH), conduziria a um desbalanço na [CO₂]/[O₂] que favorece o aumento na FR. Entretanto, estudos envolvendo FR em plantas C4 sob DH são escassos.

O milho (*Zea mays* L.) é uma planta que se utiliza da via metabólica C4 NADP-enzima málica (Massad et al., 2007), e a ocorrência de déficit hídrico na cultura do milho é motivo de grande preocupação na agropecuária, uma vez que esse cereal é a base alimentar para humanos e para ração de suínos e aves. Acredita-se que sob DH, menor $[CO_2]$ nas folhas de milho possa decrescer a g_s , o que deve refletir-se em um aumento na FR, ao menos em genótipos sensíveis ao estresse.

Nesse trabalho buscou-se avaliar diferenças no que se diz respeito à eficiência fotossintética em dois genótipos de milho contrastantes para a tolerância ao DH (2B710-sensível e DKB390-tolerante) cultivados sob diferentes níveis de água no solo (capacidade de campo – CC, e déficit hídrico – DH).

Metodologia

⁽²⁾ Estudante de Graduação em Agronomia e Bolsista Fapemig; Universidade Federal De São João Del Rey / Embrapa Milho e Sorgo; Sete Lagoas, Minas Gerais

⁽³⁾ Estudante ensino técnico em Química e bolsista CNPq; Embrapa Milho e Sorgo

⁽⁴⁾ Bolsista de Pós-Doc Fapemig; Embrapa Milho e Sorgo

CNMS CONGRESSO NACIONAL DE MILHO E SORGO 2014 - Salvador/BA

XXX CONGRESSO NACIONAL DE MILHO E SORGO

"Eficiência nas cadeias produtivas e o abastecimento global"

Condições de cultivo e material vegetal

O experimento foi conduzido em condição de casa de vegetação na Embrapa Milho e Sorgo, e o material vegetal consistiu em dois híbridos de milho contrastantes para a tolerância ao déficit hídrico: 2B710 (sensível) e DKB390 (tolerante).

As plantas foram cultivadas em vasos plásticos com capacidade de 20 L, contendo Latossolo Vermelho Distrófico Típico. O teor de água no solo foi monitorado diariamente entre 09h00min e 15h00min, com auxílio de sensores de umidade modelo GB Reader N1535 (Measurement Engineering, Austrália) instalados no centro de cada vaso, com auxílio de um trado de rosca, a uma profundidade de 20 cm.

Ao atingir o estádio de pré-florescimento, a metade de cada tratamento inicial foi submetida ao déficit hídrico (DH); a outra metade continuou recebendo irrigação diariamente, a fim de manter a umidade do solo próxima à capacidade de campo (CC), com tensão de água no solo de –18 kPa. A exposição ao DH se deu pelo fornecimento diário de 50% da água total disponível até a tensão de água no solo atingir, no mínimo, –138 kPa.

Trocas gasosas e fluorescência da clorofila a

Ao final do período de imposição do DH, a taxa fotossintética líquida (A) e a taxa de transpiração foliar (E)foram medidas simultaneamente aos parâmetros de fluorescência da clorofila a, utilizando-se um analisador de gases infravermelho (IRGA - Infrared Gas Analizer), modelo LI 6400 (LI-COR, Lincoln, NE, EUA), equipado com um fluorômetro (LI-6400-40, LI-COR Inc.), na folha correspondente da primeira espiga. A concentração intercelular de CO₂ (C_i) e a condutância estomática ao vapor de água (g_s) foram calculadas pelo referido equipamento a partir dos valores de A e E (Farquhar e von Caemmerer, 1982). As medições foram realizadas entre 09:00 e 14:00 h, sob radiação fotossinteticamente ativa artificial de 1500 µmol fótons m⁻² s⁻¹ em nível da folha, com 21 % de O₂ e 400 µmol CO₂ mol⁻¹ ar.

O IRGA foi programado para realizar curvas de resposta de A à concentração interna de CO_2 (curva A/C_i), variando-se, sequencialmente, a pressão parcial de CO_2 : 40, 30, 20, 10, 5, 2.5, 40, 60 Pa. Posteriormente, as curvas A/C_i foram transformadas em curvas A/C_c (C_c = concentração de CO_2 nos sítios de carboxilação), para estimativas da taxa máxima de carboxilação limitada pela RUBISCO ($V_{c,max}$), PEPC ($V_{p,max}$) e pela taxa de transporte de elétrons (J_{max}), conforme descrito por Massad et al. (2007).

As taxas de consumo de ATP e de NADP, bem como o requerimento em H⁺ foram estimados conforme Farquhar e von Caemmerer (1982). A taxa de fotorrespiração foi estimada conforme Valentini et al. (1995).

Estatística

Os resultados foram submetidos à ANOVA, e as médias comparadas pelo Tukey, a 5% de probabilidade.

Resultados

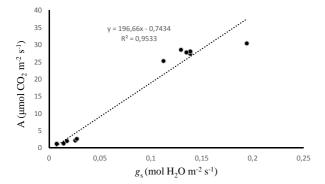
Independentemente do genótipo, houve redução expressiva de A e $g_{\rm s}$ em plantas expostas ao estresse gerado pelo DH quando comparadas àquelas que tiveram a umidade do solo mantida próxima à CC (Tabela 1), existindo ainda uma forte correlação entre essas duas variáveis (Figura 1), enquanto os valores de $C_{\rm i}$ e $C_{\rm c}$ aumentaram. Cabe reforçar que plantas sob DH oriundas do genótipo DKB390 exibiram valores de A e de $g_{\rm s}$, respectivamente, 51,9% e 39,1% maiores em relação àqueles verificados em plantas oriundas do genótipo 2B710 cultivadas na mesma condição. Além disso, apenas plantas do genótipo 2B710 sob DH apresentaram valores de A significativamente menores devido a limitações em $g_{\rm m}$.

O fechamento estomático e decréscimo na fotossíntese são geralmente aceitos como consequencias iniciais da desidratação de folhas, e isso é frequentemente observado em plantas C4 (Maroco et al., 1997; Massad et al., 2007); fato associado com diminuições em $C_{\rm i}$ passiveis de conferir aumento na FR. Nesse trabalho, Ci aumentou paralelamente ao declínio em A e $g_{\rm s}$, sugerindo que limitações bioquímicas também ocorrem com a imposição do DH.

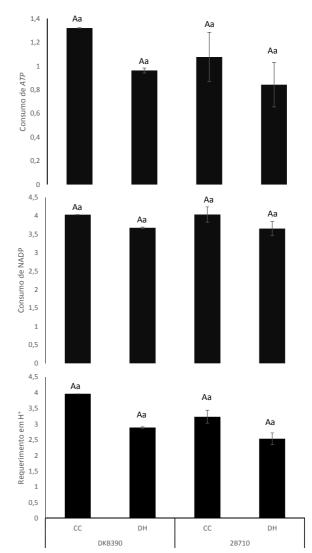
De fato, reduções em A também foram acompanhadas por menores valores de $V_{\rm p,max}$ e $J_{\rm max}$ em plantas de ambos genótipos sob DH, confirmando uma diminuição na eficiência de uso de CO₂ via PEPC. Aparentemente, o CO₂ não utilizado pela PEPC nas células do mesofilo foi drenado para as células da bainha, exacerbando a disponibilidade desse substrato para a RUBISCO. De fato, valores de $V_{c,max}$ em plantas sob DH não diferiram significativamente em relação aos verificados em plantas cultivados em solo com umidade mantida próxima à CC, o que reduziria, em última análise, a FR. Em contraste, a FR foi aumentada, ainda que muito pouco quando comparados aos verificados em plantas que se utilizam da via metabólica C3 de assimilação de CO₂.

Dado a limitações no uso do CO₂ nas células mesofílicas, o referido aumento na *FR* possivelmente fez-se necessário para fornecer substrato para produção extra de energia necessária à regeneração da PEP e de propriedades funcionais do ciclo C4, e sendo o milho uma planta C4 tipo NADP-enzima málica, a disponibilidade de ácido e málico e poder redutor

XXX CONGRESSO NACIONAL DE MILHO E SORGO


"Eficiência nas cadeias produtivas e o abastecimento global"

formados nas células do mesofilo não foram afetadas por variações em *FR*, corroborando a ausência de alterações nas taxas de consumo de ATP, NADP e no requerimento de H⁺ em plantas de ambos genótipos sob DH (Figura 2).


Tabela 1. Parâmetros de trocas gasosas obtidos *in situ* e derivados de curvas A- C_c em dois genótipos de milho contrastantes para tolerância ao déficit hídrico (2B710-sensível, e DKB390-tolerante) cultivados sob diferentes níveis de água no solo (capacidade de campo – CC, e déficit hídrico – DH). Todos os dados foram obtidos em folha correspondente da primeira espiga de cada planta (n = 3).

	2B710		DKB 390	
	CC	DH	CC	DH
$A \text{ (}\mu\text{mol CO}_2\text{ m}^{-2}\text{ s}^{-1}\text{)}$	28,06Aa	1,187Ba	27,71Aa	2,257Ba
фғsіі	0,244Aa	0,164Aa	0,335Aa	0,173Aa
$g_s (\text{mol H}_2\text{O m}^{-2} \text{s}^{-1})$	0,146Aa	0,010Ba	0,138Aa	0,023Ba
$E \text{ (mol H}_2\text{O m}^{-2} \text{ s}^{-1}\text{)}$	3,886Aa	0,192Ba	2,346Aa	0,498Aa
$C_{\rm i}$ (µmol mol ⁻¹)	31,64Ba	158,8Aa	43,38Ba	215,5Aa
$g_{\rm m}$ (mol CO ₂ m ⁻² s ⁻¹)	0,123Aa	0,022Ba	0,061Aa	0,084Aa
$C_{\rm c}$ (µmol mol ⁻¹)	17,61Ba	158,3Aa	29,51Ba	214,4Aa
FR (μmol CO ₂ m ⁻² s ⁻¹)	*Ba	1,501Aa	*Ba	1,122Aa
$V_{\rm c,max}$ (µmol m ⁻² s ⁻¹)	67,80Aa	51,36Aa	67,60Aa	52,03Aa
$V_{p,max}(\mu mol\;m^{2}\;s^{1})$	43,50Aa	14,01Ba	42,60Aa	14,94Ba
$J_{\rm max}$ (µmol m ⁻² s ⁻¹)	267,7Aa	76,40Ba	260,0Aa	81,56Ba

---*Valores negligenciáveis. Abreviaturas: taxa fotossintética (A),condutância estomática $(g_s),$ concentração interna de CO₂ (C_i), taxa transpiratória (E), eficiência fotoguímica do fotossistema II concentração de CO₂ no cloroplasto (C_c), condutância do mesofilo (g_m) , taxa fotorespiratória (FR), taxa máxima de carboxilação limitada pela Ribulose 1,5 bisfosfato (V_{c,max}), máxima carboxilação de limitada pela fosfoenolpiruvato carboxilase ($V_{p,max}$), taxa máxima de carboxilação limitada pela taxa de transporte de elétrons $(J_{\text{max}}).$

Figura 1. Gráficos de correlação de Pearson, evidenciando a associação entre a taxa fotossintética (A) e a condutância estomática ao vapor de água (gs).

Figura 2. As taxas de consumo de ATP e de NADP, bem como o requerimento em H^+ em dois genótipos de milho contrastantes para tolerância ao déficit hídrico (2B710-sensível, e DKB390-tolerante) cultivados sob diferentes níveis de água no solo (capacidade de campo – CC, e déficit hídrico – DH). Todos os dados foram obtidos em folha correspondente da primeira espiga de cada planta (n = 3).

Conclusões

Baseados nos dados de trocas gasosas obtidos $in\ situ$ e derivados de curvas $A\text{-}C_c$, depreende-se que reduções em g_s e limitações na eficiência de uso de CO_2 pela PEPC explicariam reduções em A em folhas de plantas de milho sob DH. Além disso, evidencia-se que o milho é uma típica planta C4 tipo NADP-ME, com valores de FR quase nulos a expensas da manutenção de uma elevada [CO_2] no sítio ativo da RUBISCO e PEPC, mesmo no genótipo sensível ao DH. Contudo, o genótipo DKB390 apresentou melhores respostas em face ao DH, quando comparado ao 2B710; fato

XXX CONGRESSO NACIONAL DE MILHO E SORGO

"Eficiência nas cadeias produtivas e o abastecimento global"

acoplado a uma adicional limitação em A por $g_{\rm m}$ apenas em plantas desse último genótipo sob DH.

Referências

FARQUHAR, G. D.; VON CAEMMERER, S. Modelling of photosynthetic response to environmental conditions. In: LANGE, O. L.; NOBEL, P.S.; OSMOND, C. B.; ZIEGER, H. (Ed.). **Physiological plant ecology**. New York: Springer-Verlag, 1982. v. 2 Water relations and carbon assimilation. p. 549-588. (Encyclopedia of Plant Physiology).

GRASSI, G.; MAGNANI, F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. **Plant, Cell and Environment**, Oxford, v. 28, p. 834-849, 2005.

MAROCO, J. P.; KU, M. S. B.; EDWARDS, G. E. Oxygen sensitivity of C4 photosynthesis: evidence from gas exchange and chlorophyll fluorescence analyses with different C4 subtypes. **Plant, Cell and Environment**, Oxford, v. 20, p. 1525-1533, 1997.

MASSAD, R. S.; TUZET, A.; BETHENOD, O. The effect of temperature on C4-type leaf photosynthesis parameters. **Plant, Cell and Environment**, Oxford, v. 30, p. 1191-1204, 2007.

VALENTINI, R.; EPRON, D.; ANGELIS, P.; MATTEUCCI, G.; DREYER, E. *In situ* estimation of net CO₂ assimilation, photosynthetic electron flow and photorespiration in Turkey oak (*Q. cerris* L.) leaves: diurnal cycles under different levels of water supply. **Plant, Cell and Environment**, Oxford, v. 18, p. 631-640, 1995.

XXX CONGRESSO NACIONAL DE MILHO E SORGO

"Eficiência nas cadeias produtivas e o abastecimento global"