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Abstract. The complex landscape and environmental conditions in the moist tropical region often result in poor land-cover
change detection accuracy using traditional change detection methods. This paper explores linear spectral mixture analysis
(LSMA) of multitemporal thematic mapper (TM) images to detect land-cover change in Rondônia, Brazilian Amazon basin.
Three image endmembers (shade, green vegetation, and soil) were developed based on a combination of field data and
image scatterplots. An unconstrained least-squares solution was used to unmix the multitemporal TM images into three
fractions. Then, fraction image differencing results were used to analyze land-cover change/non-change detection. The
detailed “from-to” change detection was implemented using a pixel-by-pixel comparison of classified images, which were
developed using a decision tree classifier on the multitemporal fraction images. This study indicates that LSMA is a
powerful image processing tool for land-cover classification and change detection. The multitemporal fraction images can
be effectively used for land-cover change detection. The stable and reliable multitemporal fraction images developed using
LSMA make the change detection possible without the use of training sample datasets for historical remotely sensed data.
This characteristic is particularly valuable for the land-cover change detection in the Amazon basin.

Résumé. Le paysage complexe et les conditions environnementales caractéristiques de cette région humide tropicale
entraînent souvent une précision faible dans le contexte de la détection des changements dans le couvert basée sur
l’utilisation des méthodes traditionnelles de détection du changement. Cet article explore l’analyse spectrale mixte (LSMA)
appliquée aux images multitemporelles de « thematic mapper » (TM) pour la détection des changements dans le couvert
dans la région de Rondônia, dans le bassin du fleuve Amazone. Trois composantes spectrales pures d’images (ombre,
végétation verte et sol) ont été développées basé sur une combinaison de graphiques de corrélation dérivés des données de
terrain et des images. Une solution non contrainte par moindres carrés a été utilisée pour démixer les images
multitemporelles TM en trois fractions différentes. Ensuite, les résultats de la différenciation des fractions d’images ont été
utilisés pour la détection des zones avec changement / sans changement dans le couvert. La détection en détail du
changement “de / à” a été appliquée en effectuant une comparaison pixel par pixel des images classifiées, qui ont été ensuite
développées à l’aide d’un classificateur basé sur un arbre de décision appliqué aux images multitemporelles des fractions.
Cette étude montre que la technique LSMA est un outil de traitement d’image puissant pour la classification du couvert et la
détection du changement. Les images multitemporelles des fractions peuvent être utilisées efficacement pour la détection du
changement dans le couvert. Les images multitemporelles des fractions, stables et fiables, développées à l’aide de la
technique LSMA rendent possible la détection du changement sans recours à l’utilisation d’ensembles de données
d’entraînement dans le cas des données historiques de télédétection. Cette dernière caractéristique est particulièrement
importante pour la détection du changement dans le couvert dans le bassin de l’Amazone.
[Traduit par la Rédaction]

100Introduction

Change detection techniques can be roughly grouped into
two categories: (1) those detecting binary change/non-change
information, such as using image differencing, image ratioing,
vegetation index differencing, and principal component
analysis (PCA); and (2) those detecting detailed “from-to”
change trajectory, such as using the post-classification
comparison and hybrid change detection methods (Lu et al.,
2004). Previous literature has reviewed a variety of change
detection techniques (Singh, 1989; Coppin and Bauer, 1996;
Jensen, 1996; Yuan et al., 1998; Serpico and Bruzzone, 1999;
Lu et al., 2004). When implementing change/non-change
detection, one critical step is to select appropriate thresholds in
both tails of the histogram representing the changed areas
(Singh, 1989). Two methods are often used for selection of
thresholds (Singh, 1989; Yool et al., 1997): (1) interactive
procedure or manual trial-and-error procedure — an analyst

interactively adjusts the thresholds and evaluates the resulting
image until satisfied; and (2) statistical measures — selection
of a suitable standard deviation from the mean. The
disadvantages of the threshold technique are that (i) the
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resulting differences may include external influences caused by
atmospheric conditions, sun angles, soil moistures, and
phenological differences in addition to true land-cover change;
and (ii) the threshold is highly subjective and scene-dependent,
depending on the analyst’s familiarity with the study area and
skill. When implementing detailed “from-to” change detection,
the results are mainly dependent on the classification accuracy
for each date being analyzed (Jensen, 1996). In other words, the
classification errors from the individual-date images will affect
the final change detection accuracy. The critical step is to
develop an accurate classification image for each date.
However, the complex landscapes and environmental
conditions, particularly in the Amazon basin, often result in
poor land-cover classification accuracies using conventional
classifiers. Although many efforts have been made to improve
land-cover classification and change detection in the Amazon
basin (Mausel et al., 1993; Brondízio et al., 1994; Moran et al.,
1994a; 1994b; Adams et al., 1995; Brondízio et al., 1996;
Roberts et al., 1998a), acceptable accuracies are often not
achieved without assistance of abundant and high quality
training sample data. On the other hand, the collection of a
large number of field data is, in particular, costly and
impractical in the Amazon basin. Therefore, applications of
historical remote sensing data for land-cover classifications are
often difficult because of lack of ground truth data. This
problem often induces difficulty in detecting land-cover “from-
to” change. It is necessary to develop a method that does not
require use of training sample data for the classifications of
historical remote sensing data.

Linear spectral mixture analysis (LSMA) approach supports
repeatable and accurate extraction of quantitative subpixel
information (Smith et al., 1990; Roberts et al., 1998a). It is
regarded as a physically based image processing tool that can
be used to extract fractions representing areal proportions of the
endmembers within the pixel. The LSMA approach assumes
that the spectrum measured by a sensor is a linear combination
of the spectra of all components within the pixel (Adams et al.,
1995; Roberts et al., 1998a). Hence, using the LSMA approach
can develop fractions through unmixing the multispectral
image based on selected endmembers. Previous research has
indicated that the LSMA approach can be used for land-
use/land-cover classification (Cochrane and Souza, 1998; Ustin
et al., 1999; Aguiar et al., 1999; DeFries et al., 2000; Theseira
et al., 2002; Lu et al., 2003b) and change detection (Adams et
al., 1995; Roberts et al., 1998a; 2002; Shimabukuro et al.,
1998; Elmore et al., 2000; Rogan et al., 2002). This paper
examines the potential use of LSMA for Amazonian land-cover
change detection.

Methods
Description of study area

Rondônia has experienced high deforestation rates during
the last two decades. For example, the deforestation rates in
Rondônia range from 1.14% to 2.62% per year between 1991

and 2000, much higher than the overall deforestation rate
(ranging from 0.37% to 0.80% per year) in the Brazilian
Amazon basin in the same period (Instituto Nacional de
Pesquisas Espaciais (INPE), 2002). Following the national
strategy of regional occupation and development, colonization
projects initiated by the Brazilian government in the 1970s
played a major role in this process (Moran, 1981; Schmink and
Wood, 1992). Most colonization projects in the state were
designed to settle landless migrants. The immigrants
transformed the forested landscape into a patchwork of
cultivated crops, pastures, and a vast area of fallow land.

The study area is located at Machadinho d’Oeste,
northeastern Rondônia (Figure 1). The size of the study area is
approximately 1000 km2 (30 km × 34 km). Settlement began in
the mid-1980s and major deforestation occurred in the late
1980s. The climate in this study area is classified as equatorial
hot and humid with a tropical transition area. A well-defined
dry season lasts from June to August, and the annual average
precipitation is 2016 mm (Rondônia, 1998). The annual
average temperature is 25.5 °C. The terrain is undulating,
ranging from 100 to 450 m above sea level. The main tree
communities are imbauba, lacre, leguminosae, mimosoideae,
para-para, and urucum. Several soil types have been identified,
mainly alfisols, oxisols, ultisols, alluvial soils, and other less
spatially represented associations (Bognola and Soares, 1999).
Settlers, rubber tappers, and loggers inhabit the area,
transforming the landscape through their economic activities
and use of resources (Batistella, 2001). Farming systems are
mainly household-based, and little depends on group efforts.
Loggers play a major role in providing access to remote areas
within the settlement as they open trails through the forest to
reach valuable species.

Data collection and preprocessing

Fieldwork was conducted during the dry season of 1999. The
procedure used for surveying vegetation was a multilevel
technique adapted from the methods used by the Center for the
Study of Institutions, Population, and Environmental Change
(CIPEC, 1998) at Indiana University. Preliminary image
classification and band composite printouts indicated candidate
areas to be surveyed, and a flight over the areas provided visual
insights about the size, condition, and accessibility of each site.
The surveys were carried out in areas with relatively
homogeneous ecological conditions (e.g., topography, distance
from water, and land use) and uniform physiognomic
characteristics. After defining the area to be surveyed (plot
sample), center points for three sets of nested subplots (1, 9,
and 100 m2) were randomly marked to cover the variability
within the plot sample. A detailed description of field data
collection methods and the statistical description of vegetation
inventory data were provided in Batistella (2001) and Lu et al.
(2003a). During fieldwork, stand parameters such as total tree
height and diameter at breast height in 26 plots covering
secondary succession and 14 plots covering mature forest were
measured. Meanwhile, more secondary succession and mature
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forest plots, and many other land-cover observations (such as
degraded pastures, cultivated pastures, coffee plantations, bare
lands, etc.) were identified during the fieldwork. Every plot
was registered with a global positioning system (GPS) device
to allow integration with other spatial data in geographic
information systems (GIS) and image processing systems.

Two Landsat 5 thematic mapper (TM) images of 15 July
1994 and 18 June 1998 were acquired and used in this research.
For change detection application using multitemporal remote
sensing data, accurate geometric rectification and atmospheric
calibration are two important aspects in image preprocessing.
The 1998 TM image was first geometrically rectified into UTM
projection (Universal Transverse Mercator, south 20 zone)
using control points taken from topographic maps at 1:100 000
scale. Then the 1994 TM image was registered to the same
coordination system as the 1998 TM image. The nearest-
neighbor resampling technique was used and a root mean
square error of less than 0.5 pixel was obtained for both dates of
TM images. Then, an improved image-based dark object
subtraction (DOS) model was used to implement atmospheric
correction for both TM images (Lu et al., 2002). The gain and
offset for each band and sun elevation angle were obtained from
the image header file. The path radiance was identified based
on clear water for each band. The atmospheric transmittance
value (average for each spectral band derived from radiative
transfer code) for each visible and near infrared bands was
derived from Chavez (1996). For middle infrared bands, the
atmospheric transmittance was set to one. A detailed

description about the DOS model is provided (Chavez, 1996;
Lu et al., 2002). The surface reflectance values after calibration
fall within the range between 0 and 1. For the convenience of
data analysis, the reflectance values were rescaled to the range
between 0 and 100 by multiplying 100 for each pixel.

Endmember selection and unmixing TM images

A variety of endmember selection methods have been
developed (Adams et al., 1993; Settle and Drake, 1993;
Bateson and Curtiss, 1996; Tompkins et al., 1997; Mustard and
Sunshine, 1999). For most remote sensing applications using
LSMA, the image-based endmember selection method is often
used because the endmembers are easily obtained and represent
spectra measured at the same scale as the image data (Roberts
et al., 1998a). In general, the image endmembers are developed
from the extremes of the image feature space, assuming they
represent the purest pixels in the images (Mustard and
Sunshine, 1999). Three or four endmembers are often used
(Adams et al., 1995; Roberts et al., 1998a; Lu et al., 2003b). In
this study, endmembers were initially identified from the 1998
TM image based on ground truth data. The shade endmember
was identified from the areas of clear and deep water and the
green vegetation (GV) endmember was selected from the areas
of dense initial successional vegetation. Soil endmembers were
selected from road intersections and from bare soils in
agricultural lands. The reflectance features of these initially
selected endmembers were compared with those endmembers
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Figure 1. Location of the study area in Rondônia, Brazilian Amazon basin.



selected from the scatterplots of bands TM 3 and TM 4
(Figure 2a) and of bands TM 4 and TM 5 (Figure 2b). The
endmembers whose reflectance curves were similar but located
at the extreme vertices of the scatterplot were finally used. An
average of 10 to 15 pixels of these vertices was calculated.
Figure 3 illustrates the reflectance characteristics of the
selected three endmembers. They are independent of each
other. After determination of endmembers, an unconstrained
least-squares solution was used to unmix the 1998 TM image
into three endmember fraction images. The same method was
used to unmix the 1994 TM image into shade, GV, and soil
fraction images. Then the multitemporal fraction images were
used to implement land-cover classification and change
detection.

Change detection analysis

Different fraction images have their own characteristics in
representing land-cover types, and different vegetation stand
structures and land-cover types have different area proportional
compositions of the endmembers. For example, vegetation and
nonvegetation have significantly different soil fractions — very
low soil fractions for vegetation covers and high values for

nonvegetation covers except water. Thus, soil fraction
differencing image from two dates can be used to detect
vegetation deforestation or reforestation. In the shade and GV
fractions, different vegetation types such as successional and
mature forests have different fractions owing to their different
vegetation stand structures. Also vegetation and nonvegetation
have different shade and GV characteristics. Thus, the fraction
differencing images of bi-temporal shade or GV fractions can
be used to detect the changes between different vegetation
types, in addition to the changes between vegetation and
nonvegetation. The image differencing method of bi-temporal
fractions can be expressed as follows:

∆Shade = Shade(t1) – Shade(t2)

∆GV = GV(t1) – GV(t2)

∆Soil = Soil(t1) – Soil(t2)

where t1 and t2 are the prior and posterior dates for the change
detection. So, the fraction differencing results can be used for
land-cover change detection through the use of suitable
threshold methods. In general, thresholds were determined
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Figure 2. Scatterplots of two TM image bands: (a) between bands TM 3 and TM 4, and (b) between bands TM 4 and TM 5.



from the two tails of the histogram based on trial-and-error
procedure. In this study, the selection of thresholds was based
on the mean and standard deviation of unchanged land-cover
classes, because unchanged land covers have normally
distributed histograms (the mean value is close to zero) but
changed land covers do not. The threshold values of unchanged
land covers were identified on the fraction images through
statistical analysis of 25 unchanged land-cover sample plots.
Different standard deviations (from 2.5 to 3.5) were tested to
find a suitable threshold for change detection. Thus, three
binary change/non-change detection images were developed
from the three fraction differencing images. The final
change/non-change detection image was developed through the
“or” overlay operation. This means that any change identified
from each fraction differencing image was assigned as change
in the final detection image.

Visual interpretation of multitemporal color composite is an
alternative way to analyze land-cover change because it can
make full use of the analyst’s knowledge. When ∆Shade, ∆GV,
and ∆Soil are assigned as red, green, and blue, respectively, the
color composite image can tell us how the different land-cover
types have changed. For example, red in the color composite
indicates a high shade differencing value associated with both
low GV and soil fraction differencing values, implying the

change from mature forest to successional vegetation because
GV and soil fractions are similar between mature forest and
sucessional vegetation, but the shade fraction is decreased from
mature forest to successional vegetation owing to their
different forest stand structures, i.e., high shade fraction values
for mature forest but low shade values for successional
vegetation. Yellow in the color composite indicates high values
in the shade and GV fraction differencing images associated
with low or negative values in the soil fraction differencing
image, implying the change from mature forest to bare land or
pasture (in the dry season, some pastures are dead). The
conversion from mature forest to bare land or pasture makes
significant change in forest stand structure, leading to
decreasing shade and GV fractions from mature forest to bare
land or pasture, but increasing soil fraction values. Other colors
can also be used to analyze the land-cover change trajectories
because the fractions represent physical characteristics.

Overall change/non-change information is not sufficient for
many research topics and applications. Hence, a detailed land-
cover “from-to” change detection is often required. In this
study, five land-cover types were identified: mature forest
(MF); secondary succession (SS), composed of initial (SS1)
and advanced (SS2) succession; agricultural land and pasture
(AP); bare land including urban areas and bare soils (UB); and
water (WA). Thus, five land-cover types can produce 25
possible change trajectories. Figure 4 illustrates the trajectories
of land-cover change in the Rondônia region of Brazil
(Batistella, 2001). It indicates that mature forest could be
converted to different land-cover types such as pastures,
successional vegetation, agricultural lands, and roads after
deforestation. Pasture can be transformed to successional
vegetation, agricultural lands, bare lands, and so on. In practice,
some change trajectories are unreasonable or impractical. For
example, the change trajectories from agropastoral lands or
young successional vegetations to mature forest in a 4-year
period (from 1994 to 1998 in this study) are improbable. Also,
some changes are caused by image registration errors and
spatial resolution limitation. For example, the changes in water
areas in this study are caused by the TM medium-spatial
resolution (30 m) and multitemporal image registration errors
because the river width is often less than 30 m (one pixel) and
the registration errors may reach over 15 m. After a careful
analysis of all possible changes, six change trajectories and five
unchanged classes were defined (Table 1).

The “from-to” change detection was produced using a post-
classification comparison method. Thus, the critical step is to
develop an accurate land-cover classification image of each
date separately. In this study, data from a total of 134 plots
covering the five classes were collected in 1999. Each plot was
linked to the 1998 fraction images. A window size of 3 × 3 was
used to extract the fraction value for each plot. The mean,
standard deviation, minimum and maximum values were
calculated to define the thresholds for each land-cover class. A
detailed description of threshold definition is provided in Lu et
al. (2003b). After definition of the threshold for each land-
cover type, a decision tree classifier was used to conduct the
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Figure 3. Reflectance characteristics of three selected image
endmembers.



land-cover classification based on the fraction images (Lu et
al., 2003b). The same thresholds were also used for the 1994
fraction images to produce the land-cover classification image.

Results
Land-cover change/non-change detection

Visual analysis of fraction images is useful for understanding
the characteristics of different land-cover types. Figure 5
provides comparisons of the multitemporal fraction images
derived from 1994 and 1998 TM images. In the shade fraction
image, water appears white and mature forests appear bright
grey owing to their high shade fraction values. Successional

vegetation, some agricultural land such as coffee plantations
and degraded pastures appear grey. Urban areas, roads, and
bare soils appear dark grey. On the GV fraction image,
successional vegetation appears white owing to its high GV
fraction values. Mature forests appear bright grey. Pastures and
agricultural lands had a wide variation of GV fraction values
owing to their different vegetation cover densities. Some of
them (e.g., degraded pastures, coffee plantations) had similar
GV fractions as successional vegetation. The very low GV
fraction values of water, urban areas, and bare soils make them
appear black on the GV fraction image. In contrast, urban areas,
roads, and bare soils appear white on the soil fraction because
of their high fraction values. Pastures and agricultural lands
appear grey, successional and mature forests and water areas
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Figure 4. Trajectories of land-cover change in Rondônia.

Type Change trajectories Meaning

Changed MF to SS Mature forest in 1994 was changed to SS in 1998
MF to AP or UB Mature forest in 1994 was changed to agropastoral land, built-up land, or bare land in 1998
SS to AP or UB SS in 1994 was changed to agropastoral land, built-up land, or bare land in 1998
AP or UB to SS Agropastoral land or bare land in 1994 was changed to SS in 1998
AP to UB Agropastoral land in 1994 was changed to built-up or bare land in 1998
UB to AP Bare land in 1994 was changed to agropastoral land in 1998

Unchanged MF, SS, AP, UB, and WA Unchanged land-cover types between both dates

Note: MF, mature forest; SS, secondary succession; UB, urban areas and bare lands; AP, agropastoral lands; WA, water.

Table 1. Definition of land-cover change trajectories used in this study.



appear black owing to their very low soil fraction values. The
different characteristics of land-cover types on the fraction
images provide the basis for understanding the classification of

land-cover classes. Comparisons of the same fraction images
between 1994 and 1998 indicate that the unchanged land covers
have similar grey tones. For example, unchanged mature
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Figure 5. Characteristics of fraction images in Rondônia.



forests have similar bright grey tones in the shade and GV
fraction images because of their high shade and GV fraction
values and have dark grey tones in the soil fraction images
owing to their very low soil fraction values. However, for those
changed land covers, the characteristics between both dates of
fraction images vary depending on the change trajectory. Thus,
differencing images between the same fractions of both dates
provides new insights to visually interpret the land-cover
change.

Figure 6 illustrates the fraction differencing images and the
land-cover change/non-change detection image. The grey in
this figure indicates the unchanged land-covers. The white in
the shade differencing image indicates the significant decrease
of shade fraction values from 1994 to 1998, implying the

change from mature forests to pastures or bare lands. The dark
grey or black indicates a significant increase of shade values
from 1994 to 1998, implying the change from initial to
advanced successional stages. The white in the GV
differencing image indicates high decrease in GV fraction
values from 1994 to 1998, implying the change from
successional vegetation to bare lands or pastures. The dark grey
or black indicates high increase in GV values from 1994 to
1998, implying the change from bare lands or pastures to
successional vegetation. The white in the soil fraction
differencing image indicates the high decrease of soil fraction
values from 1994 to 1998, implying the change from bare lands
or pastures to successional vegetation, while the black indicates
high increase of soil fractions, implying the change from
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Figure 6. Characteristics of land-cover changes on the fraction differencing images in Rondônia.



mature forests or successional vegetation to bare lands or
pastures. The change/non-change detection result does include
some errors caused by errors inherent in the image registration
(e.g., river width) and the LSMA approach limitation (e.g.,
urban areas). Visual comparison of the change/non-change
detection results with the multiple dates of TM image color
composites indicated that almost all land-cover changes were
accurately detected but for the urban areas and rivers. The
possible reason of poor urban change detection is the complex
fraction composition within the pixel in the urban landscape.
Almost all pixels in the urban areas are mixed with different
land-cover types owing to the limitation of spatial resolution of
TM data and the fraction composition of each pixel is possibly
different from that of its neighbor pixels. Thus, the image
registration error may cause the difference on the fraction
differencing image. This evidence is clearer in the single
fraction differencing images. For example, in the GV fraction
differencing image, the urban areas appear as grey (unchanged)
because urban areas have very low GV fraction values.
However, in the shade or soil fraction differencing image,
many pixels in the urban areas appear bright grey owing to the
impacts of variation of shade and soil fractions between
fraction images of both dates.

A color composite of fraction differencing images can
provide different insights about land-cover change detection
information. Figure 7 illustrates a comparison of color
composites between 1994 and 1998 TM images (bands TM 4,
5, and 3 were assigned as red, green, and blue, respectively) and
the fraction differencing image color composite (∆Shade, ∆GV,
and ∆Soil were assigned as red, green, and blue, respectively).
Visual interpretation and comparison of these color composites
indicate that the different colors represent different land-cover
change trajectories. For example, the land-cover class in the
selected polygon in the 1994 TM color composite is a mature
forest. In 1998, some mature forest was converted to
agropastoral lands (some pastures have color similar to
agricultural lands because of the dry season) and successional
vegetation. The yellow color within the same polygon indicates
the change from mature forest to agropastoral lands, and the red
implies the change from mature forest to successional
vegetation or agropastoral lands (such as coffee plantations).
Thus, from the fraction differencing image color composite,
land-cover change can be visually identified. Table 2 provides
the major land-cover change trajectories associated with the
colors in Figure 7. This analysis of fraction differencing image
color composites is useful for further quantitative land-cover
change detection using the multitemporal fraction images.

Land-cover “from-to” change detection

Figure 8 illustrates a comparison of fraction values among
selected land-cover classes. It was developed from fraction
images using the LSMA approach for the 1998 TM image,
based on 134 sample sites covering different land-cover types.
It indicates that mature forests and successional vegetation
have very low soil fraction values while mature forests have

higher shade fraction but lower GV fraction than successional
vegetation. Agropastoral lands have relatively higher soil
fraction but lower shade fraction than successional and mature
forests. Urban areas and bare lands have the highest soil
fraction values but much lower shade and GV values than
vegetated areas. In contrast, water has the highest shade values
but low soil and GV values. The different fraction
compositions among the land-cover types provide the potential
to accurately classify the land-cover types and implement
change detection between two dates of fraction images.
Therefore, the thresholds to distinguish land-cover types can be
defined based on the typical land-cover classes from the sample
plot data. These thresholds were then used to classify the entire
study area for 1998 fraction images. Because stable and reliable
fraction images also were developed from the 1994 TM image,
the same thresholds were directly used for the 1994 fraction
image for land-cover classification. Finally, the classified
images of both dates were used to implement land-cover
change detection using the post-classification comparison
method, pixel by pixel.

Figure 9, which illustrates the land-cover change
distribution between 1994 and 1998, was developed from bi-
temporal fraction images. It indicates that unchanged
agropastoral lands are mainly distributed near the urban areas
and along both sides of roads. Deforestation occurred along the
roads and unchanged mature forest was located away from the
roads and at large patches of forest reserves. The most obvious
land-cover change is the conversion of mature forest to
agropastoral lands or bare lands. Table 3 provides the statistical
results of land-cover change detection between 1994 and 1998.
The changes are mainly from the mature forest deforestation
and vegetation regrowth, accounting for 56.93% (including
14.63% of the changes from mature forest to successional
vegetation and 42.3% of the changes from mature forest to
agropastoral lands and bare lands) and 25.8% of the total
changed areas, respectively. In the unchanged areas, mature
forest and agropastoral lands account for 73.7% and 21.6%,
respectively. The change detection accuracy assessment was
not available for this study owing to the lack of ground-truth
data for the 1994 TM data and the difficulty for visually
interpreting between the successional vegetation, degraded
pastures, and agroforestry based on TM images.

Discussion
The land-cover classification of historical remote sensing

images using traditional classifiers is often problematic owing
to the lack of training sample data. The LSMA approach avoids
this dilemma because it provides accurate and stable fractions
for multitemporal TM images. This allows the direct transfer of
thresholds for each land-cover type developed on one date of
fraction images to another date of fraction images. Cautions
need to be taken when implementing the model transfer among
multitemporal fraction images to make sure the fraction images
were developed with high quality. The examination of fraction
values for those unchanged objects is useful to assure that the
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fraction values of the same unchanged objects have similar
values on both dates of fraction images. If the fraction values
are significantly different, checking the endmembers and the
fraction images is necessary to verify that the endmembers
selected are suitable. In the LSMA approach, endmember
selection is a crucial step. The selection of suitable
endmembers often involves an iterative process, i.e., selecting
initial endmembers, refining these endmembers, evaluating

fraction images, and then further refining endmembers. Finally,
selected endmembers should be independent of each other. For
a study area with complex landscape structures, such as those
urban areas composed of residential, commercial and industrial
uses, agricultural lands, and forests, identification and selection
of proper endmembers for the whole study area is often not
straightforward. Two possible approaches may be taken for
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Figure 7. Comparison of land-cover change on the color composites between 1994 and 1998 TM images for the study
area of Rondônia.



effective derivation of endmembers in an intricate urban area:
(1) stratification or (2) use of multiple endmembers.

Stratification of the whole study area into smaller regions of
similar landscape structures may be necessary to facilitate the
derivation of high quality fraction images. For example, in a
study area dominated by residential, commercial, and industrial
uses, possible endmembers may be GV, shade, and impervious
surface, while in an agriculture-dominated region, endmembers
may be GV, shade, and soil. In the forested area, GV, shade, and
non-photosynthetic vegetation (NPV) may be the most
appropriate choice of endmembers. However, if GV, shade,
impervious surface, soil, and NPV are used for the entire study
area without stratification, the process for developing high
quality fraction images could be lengthy and technically

difficult because of potentially high correlations between some
endmembers, e.g., between impervious surfaces, soil, and NPV
(Lu and Weng, 2004). On the other hand, a limited number of
endmembers may not account for the spectral variability of the
complex landscape and cannot tackle the mixed pixel problem.
In urban regions, because of the complexity of impervious
surfaces, identification of suitable impervious surfaces as
endmembers, based on remote-sensing features, is often
difficult and the impervious surfaces tend to be confused with
soils. Hence, a possible method is to use multiple endmember
models (Roberts et al., 1998b). The multiple-endmember
LSMA approach permits a large number of endmembers to be
modeled across a scene and has shown a better performance
than the standard LSMA approach (Roberts et al., 1998b). The
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Major change
trajectories

Shade change
(1994–1998)

GV change
(1994–1998)

Soil change
(1994–1998) Color compositea

MF to SS ++ 0 or – 0 Red
MF to AP or UB ++ ++ – – Yellow
SS to AP or UB 0 or + ++ – – Between green and yellow
AP or UB to SS 0 or – – – ++ Blue
AP to UB 0 + – Between green and yellow, but dark
UB to AP 0 – + Dark blue

Note: MF, mature forest; SS, secondary succession; UB, urban areas and bare lands; AP, agropastoral lands; ++, higher change
amounts (decreased from 1994 to 1998) than +; – –, higher change amounts (increased from 1994 to 1998) than –; 0, almost
unchanged between 1994 and 1998.

aShade, GV, soil differencing images as red, green, and blue, respectively.

Table 2. Interpretation of some typical land-cover change trajectories in the color composite with bi-temporal
fraction differencing images.

Figure 8. Comparison of fractions of typical land-cover classes for the study area of Rondônia.



multiple-endmember LSMA approach may be more suitable
for use in urban landscapes. For this study, three endmembers
were suitable for unmixing the non-urban areas for land-cover
change detection because very few urban areas exist in this
study area.

The fraction differencing images have their own
characteristics and merits in land-cover change detection. For
example, the soil fraction differencing image reflects more

effectively the vegetation and nonvegetation change, but is not
sensitive to changes within vegetation types. In contrast, the
shade and GV fraction differencing images are more effective
for vegetation change detection. Therefore, the selection of
appropriate endmember fraction differencing images provides
the flexibility to implement change detection according to
specific research needs.

98 © 2004 CASI

Vol. 30, No. 1, February/février 2004

Change trajectory Area (ha) Area (%) Unchanged Area (ha) Area (%)

MF to SS 3 340.53 14.63 MF 56 416.50 73.71
MF to UB or AP 9 658.44 42.30 SS 1 958.76 2.56
SS to UB or AP 1 225.80 5.37 AP 16 520.40 21.59
UB or AP to SS 5 891.85 25.80 UB 502.47 0.66
AP to UB 852.57 3.73 WA 1 136.07 1.48
UB to AP 1 864.17 8.16
Total area 22 833.36 Total area 76 534.20

Note: MF, mature forest; SS, secondary succession; UB, urban areas and bare lands; AP, agropastoral lands;
WA, water.

Table 3. Statistical results of land-cover change detection between 1994 and 1998.

Figure 9. Land-cover change distribution between 1994 and 1998 for the study area of
Rondônia.



Conclusions
Using traditional methods, land-cover change detection in

moist tropical regions is often difficult. The LSMA has proved
to be a powerful tool that decomposes the image data into
fraction images with physical meanings and has shown the
capability to implement land-cover classification and change
detection. This study indicates that fraction differencing
images have different characteristics in land-cover change
detection. Shade or GV fraction differencing images are more
suitable to detect vegetation change, while the soil fraction
differencing image is more suitable to detect vegetation/
nonvegetation change. The LSMA is especially suitable to
detect detailed “from-to” change. The stable and reliable
fraction images developed using LSMA from multitemporal
images provide the capability to directly transfer the thresholds
of each land-cover type from one date of fraction images to
other dates of fraction images. This characteristic is
particularly valuable to classify land-cover types for historical
remotely sensed data to implement accurate land-cover change
detection.
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