
ACT Publication No. 04-09 

Application of spectral mixture 
analysis to Amazonian land-use and 

land-cover classification 

D. Lu, M. Batistella, E. Moran and P. Mausel 

Reprinted from: 

International Journal of Remote Sensing. 10 December 2004. Vol. 25, No. 23. 
Taylor & Francis Ltd. Pp. 5345-5358. 

Anthropological Center for Training and Research on Global Environmental Change 
Indiana University, Student Building 331, 701 E. Kirkwood Ave., 47405-71 00, U.S.A. 

Phone: (81 2) 855-61 81, Fax: (81 2) 855-3000, Ernail: act@indiana.edu, internet: www.indiana.edu/-act 



MT. J. REMOTE SENSING, 10 DECEMBER, 2004, 
VOL. 25, NO. 23, 5345-5358 

Taylor & Francis 0 b B r r h G , u y  

Application of spectral mixture analysis to Amazonian land-use and 
land-cover classification 

D. LUt*, M. BATISTELLAS, E. MORANtg and P. MAUSEL7 

?Center for the Study of Institutions, Population, and Environmental 
Change (CIPEC), Indiana University, 408 North Indiana Avenue, 
Bloomington, IN 47408, USA 
$Brazilian Agricultural Research Corporation, Embrapa Satellite Monitoring, 
Campinas, SP ,13088-300, Brazil 
$Anthropological Center for Training and Research on Global Environmental 
Change (ACT), Indiana University, Bloomington, IN 47405, USA 
YDepartment of Geography, Geology, and Anthropology, Indiana State 
University, Terre Haute, IN 47809, USA 

(Received 12 March 2003; in final form 3 May 2004) 

Abstract. Abundant vegetation species and associated complex forest stand 
structures in moist tropical regions often create difficulties in accurately 
classifying land-use and land-cover (LULC) features. This paper examines the 
value of spectral mixture analysis (SMA) using Landsat Thematic Mapper (TM) 
data for improving LULC classification accuracy in a moist tropical area in 
Rondbnia, Brazil. Different routines, such as constrained and unconstrained 
least-squares solutions, different numbers of endmembers, and minimum noise 
fraction transformation, were examined while implementing the SMA approach. 
A maximum likelihood classifier was also used to classify fraction images into 
seven LULC classes: mature forest, intermediate secondary succession, initial 
secondary succession, pasture, agricultural land, water, and bare land. The 
results of this study indicate that reducing correlation between image bands and 
using four endmembers improve classification accuracy. The overall classifica- 
tion accuracy was 86.6% for the seven LULC classes using the best SMA 
processing routine, which represents very good results for such a' complex 
environment. The overall classification accuracy using a maximum likelihood 
approach was 81.4%. Another finding is that use of constrained or 
unconstrained solutions for unmixing the atmospherically corrected or raw 
Landsat TM images does not have significant influence on LULC classification 
performances when image endmembers are used in a SMA approach. 

1. Introduction 
Land-use and land-cover (LULC) classification, especially for successional 

stages in a moist tropical region, is often difficult using medium spatial resolution 
data such as Landsat Thematic Mapper (TM) (Lu et al. 2003a). Per-pixel based 
classification approaches, such as the maximum likelihood classifier (MLC), which 
are based solely on spectral signatures for LULC classification, often result in poor 
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accuracy (Lu et al. 2004). The main reasons for this result are heterogeneity of 
vegetation structure, abundance of vegetation species, smooth transition between 
successional stages, and limited spatial resolution of remotely sensed data such as 
Landsat TM. Mixed pixels are common in medium spatial resolution remotely 
sensed data and such pixels have been recognized as a problem for remote sensing 
applications (Fisher 1997, Cracknell 1998). A mixed pixel is one in which more than 
one feature is present (e.g. 60% of a pixel might be forest and 40% might be soil 
resulting in a complex spectral signature). Spectral mixture analysis (SMA) has long 
been recognized as an effective method for ameliorating mixed pixel problems in 
remote sensing data and it has been proven to be helpful in improving classification 
accuracy (Adams et al. 1995, Roberts et al. 1998a, Shimabukuro et al. 1998, Lu 
et al. 2003a). 

For many remote sensing applications, radiometric and atmospheric calibrations 
are often necessary and several different approaches have been used (Markham and 
Barker 1987, Chavez 1996, Stefan and Itten 1997, Vermote et al. 1997, Yang and 
Lo 2000, Song et al. 2001, Lu et al. 2002). Selecting a suitable atmospheric 
correction method is important for accurately converting digital number (DN) 
values into surface reflectance. However, in practice, because of lack of atmospheric 
data or time and cost constraints, much previous research did not implement 
atmospheric correction, or only converted DN values into radiance. In the SMA 
approach, some authors directly used DN or radiance (Cochrane and Souza 1998, 
Shimabukuro et al. 1998) and others used reflectance that was calibrated using 
different methods, such as the empirical-line method (Adams et al. 1995, Roberts 
et al. 1998a, Sabol et al. 2002), image-based dark object subtraction method (Novo 
and Shimabukuro 1997, Lu et al. 2003a), normalization of invariant objects 

, between imageries (Elmore et al. 2000), and 6s  (Ferrier el al. 2002). Another 
problem associated with image data is high correlation between adjacent 
wavelengths, for example, visible bands in Landsat TM or ETM+ data. Some 
authors used the whole set of bands, while others used principal component 
analysis (PCA) or minimum noise fraction (MNF) to transform the original data to 
a new dataset to reduce the correlation and data redundancy (Garcia-Haro et al. 
1996, Cochrane and Souza 1998, van der Meer and de Jong 2000, Small 2001). 
Comparative studies of impacts of radiometric and atmospheric correction and 
image transform methods on fraction image results are needed. 

Endmember selection may be the most important aspect in SMA. Much 
research for endmember selection has been conducted (Smith et al. 1990, Adams 
et al. 1993, Roberts et al. 1993, Settle and Drake 1993, Bateson and Curtiss 1996, 
Tompkins et al. 1997, Garcia-Haro et al. 1999, Mustard and Sunshine 1999, Van 
der Meer 1999, Maselli 2001, Dennison and Roberts 2003). Lu et al. (2003a) and 
Theseira et al. (2003) summarized the major methods used in previous research. 
How many endmembers are required for a given study area and how to best 
identify them are two questions that need to be addressed initially. Ustin et al. 
(1996) indicate that regardless of the number of bands, only two to six endmembers 
are needed to characterize the overall variance in the image. Roberts et al. (1998b) 
found that two endmembers can model the majority of image scenes. In reality, 
three endmembers (e.g. green vegetation (GV), shade, and soil) and four 
endmembers (e.g. GV, shade, soil, and non-photosynthetic vegetation (NPV)) are 
often used (Smith et al. 1990, Adams et al. 1995, Cochrane and Souza 1998, Aguiar 
et al. 1999, Small 2001, Sabol et al. 2002). For many applications of SMA using 
remote sensing data, image endmembets are often used because they can be easily 
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obtained and they represent the spectra measured at  the same scale as the image 
data (Roberts et al. 1998a). Image endmembers are derived from the extremes of 
the image feature space, assumed to represent the purest pixels in the images 
(Roberts et al. 1998a, Mustard and Sunshine 1999). However, if an image does not 
contain sufficiently pure examples of a specific material to allow its identification 
from the spectra of individual pixels, then it is necessary to use reference 
endmembers to link image endmembers with actual target materials (Roberts et al. 
1993, Adams et al. 1995, Roberts et al. 1998a). Selecting reference endmembers 
from a spectral library or from field measurements is often flexible, but it is difficult 
to account for all possibie features and processes due to different factors influencing 
the data spectra from spectral library information. At present, there is a lack of 
guidelines to identify which endmember selection method is most suitable for a 
specific study area, and different authors often use different methods. Selection of 
endmembers is often an iterative process. Evaluating the fraction images and 
residual images are prerequisite to refining endmembers. The characteristics of a 
study area and its scale are also important factors affecting the decision of 
endmember selection. An ideal endmember selection method should be easy to 
implement and to identify the true endmembers. 

Although the SMA approach has been used for different applications, some 
important issues are still poorly understood. For example, is atmospheric correction 
of remotely sensed data required before using SMA? Can reduction of correlation 
between images improve fraction image quality? How many endmembers are 
suitable for LULC classification? Which unmixing solutions (i.e. constrained or 
unconstrained solution) can improve the quality of fraction images? The objectives 
of this paper attempt to answer these questions through a comparison of different 
image processing routines used in SMA for LULC classification in the Brazilian 
Amazon basin. 

2. A brief description of SMA 
SMA is regarded as a physically based image-processing tool. It supports 

repeatable and accurate extraction of quantitative subpixel information (Smith 
et al. 1990, Roberts et al. 1998a). The SMA approach assumes that the spectrum 
measured by a sensor is a linear combination of the spectra of all components 
within the pixel and the spectral proportions of the endmembers reflwt proportions 
of the area covered by distinct features on the ground (Adarns et al. 1995, Roberts 
et al. 1998a). The mathematical model can be expressed as 

where i is the spectral band used; k= I, ..., n (number of endmembers); Rt is the 
spectral reflectance of band i of a pixel, which contains one or more endmembers; 
fk is the proportion of endmember k within the pixel; Rik is known as the spectral 
reflectance of endmember k within the pixel on band i, and ei is the error for band i. 

In theory, in order to solve fk, the following conditions should be met: (1) 
selected endmembers should not be a linear combination of each other, (2) the 
number of endmembers should be less than or equal to the spectral bands used, and 
(3) the spectral bands selected for analysis should not be highly correlated. Two 
methods, i.e. constrained (Garcia-Haro et al. 1996, Aguiar et al. 1999) and 
unconstrained solutions (van der Meer and de Jong 2000) are often used to unmix 
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the linear mixture mode$. For a constrained unmixing solution,/;, is subject to the 
following restrictions: C fk = 1 and 0 I fk 1. 

k= 1 
For the unconstrained solution, the fraction fk may assume negative values and 

is not constrained to sum to one. Therefore, the results from the unconstrained 
solution do not reflect the true abundance fractions of endmembers. 

3. Study area 
Rond6nia has experienced high deforestation rates during the past two decades 

(INPE 2002). Following the national strategy of regional occupation and 
development, colonization projects initiated by the Brazilian government in the 
1970s played a major role in this process (Moran 1981). Most colonization projects 
in the state were designed to settle landless migrants. The settlers transformed the 
forested landscape into a patchwork of cultivated crops, pastures, and successional 
forests. The study area is located at Machadinho d'Oeste, northeastern Rond8nia 
(figure 1). Deforestation began in this area in the late 1980s. Most of the 
successional forests are less than 10 years old. The terrain is undulated, ranging 
from 100 to 450m above sea level. Several soil types were found, mainly alfisols, 
oxisols, ultisols, alluvial soils, and other less spatially represented associations 
(Bognola and Soares 1999). The climate in this study area is classified as equatorial 
hot and humid, with tropical transition. The well-defined dry season lasts from June 

Figure 1. Location of the study area in RondBnia, Brazilian Amazon basin. 
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to August. The annual average precipitation is 2016mm and annual average 
temperature is 25.5"C (RondGnia 1998). 

4. Methods 
4.1. Data collection 

Fieldwork was conducted in August 1999 and August 2000. Preliminary image 
classification and band composite printouts identified candidate areas to be 
surveyed, and a flight over the areas provided visual insights about the size, 
condition, and accessibility of each site. After driving extensively throughout the 
settlements, field observations gave insight into the structure of regrowth stages, 
mainly regarding total height and ground cover of dominant species. The procedure 
used for surveying vegetation was a multilevel technique adapted from methods 
used by researchers at the Center for the Study of Institutions, Population, and 
Environmental Change (CIPEC) at Indiana University (CIPEC 1998). After 
defining the area to be surveyed (plot sample), three subplots were randomly 
installed to cover the variability within the plot sample. A plot is composed of three 
nested squares (figure 2): one for sampling ground cover and tree or woody climber 
species seedlings (I m2); one for sampling sapling information (9m2); and one for 
sampling trees and woody species (100m2). The centre of each subplot was 
randomly selected. Seedlings were defined as young trees or shrubs with a 
maximum stem diameter less than 2.5 cm. Saplings were defined as young trees with 
DBH (diameter at breast height) from 2.5cm to less than 10cm. Trees were defined 
as woody plants with a DBH greater than or equal to IOcm. Height, stem height, 
and DBH were measured for all trees in the 100m2 area. Height and DBH were 
measured for all saplings in the 9 m2 area. Ground cover estimation and counting of 
individuals were conducted for seedlings and herbaceous vegetation in the I m2 
area. Every plot was registered with a global positioning system (GPS) device to 
allow further integration with spatial data in geographical information systems 
(GIs) and image processing systems. Forty plots and 120 subplots were measured 
during the fieldwork in 1999. Detailed information regarding data gathering can be 
found in Batistella (2001) and Lu et al. (2003b). The forest stand parameters were 
analysed and the sample data were classified as SS1, SS2, SS3, and mature forest. 
Based on the stand structure (average stand diameter, average stand height, 
aboveground biomass, etc.), more sample plots, covering different secondary 
succession (SS) stages and other LULC types, were collected during fieldwork in 
August 2000. The sample plots were also overlaid on the Landsat TM colour 
composite to check the reflectance characteristics and to adjust LULC types if 
needed, considering the difference between the dates of Landsat TM image 
acquisition and field data collection. The field data were randomly separated into 
two groups. One group was used for training data for supervised classification and 
another group for test data. IKONOS data (acquired on 28 May 2001) were also 
used to identify more test sites for classification accuracy assessment. 

4.2. Image preprocessing 
Accurate geometric rectification and atmospheric calibration are two important 

aspects of image preprocessing. In this research, Landsat TM data from 18 June 
1998 were geometrically rectified using control points taken from topographic maps 
at 1 : 100000 scale (Universal Transverse Mercator (UTM), south 20 zone). A 
nearest-neighbour resampling technique was used and a root mean square error 
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Figure 2. Strategy of field data collection for successional and mature forests. DBH, diameter 
at breast height. 
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with less than 0.5 pixel was obtained. The Landsat TM image was atmospherically 
calibrated using an improved image-based dark object subtraction (DOS) model 
(Lu et al. 2002). The gain and offset for each band and sun elevation angle were 
obtained from the image header file. The path radiance was identified based on 
clear water for each band. The atmospheric transmittance values for the visible and 
near infrared bands were derived from Chavez (1996), which were an average for 
each spectral band derived from radiative transfer code. For middle infrared bands, 
the atmospheric transmittance was set to 1. The surface reflectance values after 
calibration fell within the range 0-1. For the convenience of data analysis, the 
reflectance values were rescaled to range between 0 and 100 by multiplying by 100 
for each pixel. 

4.3. Design of different processing routines 
In this study, endmembers were initially identified from the Landsat TM image 

based on ground truth data. The shade endmember was identified from the areas of 
clear and deep water, GV was selected from the areas of dense grass and pasture, 
and soil endmembers were selected from bare ground. The reflectances of these 
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initial endmembers were compared with those of the endmembers selected from the 
scatterplots of bands TM 3 and TM 4 and of bands TM 4 and TM 5. The 
endmembers whose curves are similar, but located at the vertices of the scatterplot, 
were finally selected. A MNF transformation was used to reduce data redundancy 
between image bands and to assist in endmember selection. Because the goal of this 
research is to find the most appropriate for LULC classification using a SMA 
approach, six different processing r0utines;i.e. Raw-c, Ref-c, Ref-uc, MNF-c, 
Subset-c, and Subset-k, were tested and their classification results compared. 
Figure 3 illustrates the six image processing approaches used for Amazonian LULC 
classification in this paper. 

4.4. Comparison of LULC classification results 
SMA can be regarded as an image-processing tool that converts a Landsat TM 

image into a physically-based fraction image. In order to assess objectively the 
capability of different processing methods in SMA, MLC was used to classify the 
fraction images into seven LULC classes: mature forest, intermediate secondary 
succession (SS2), initial seconda'ry succession (SSI), pasture (including cultivated 
and degraded pastures), agriculture (including annual crops and perennial 
plantations), water, and bare land (including urban areas, roads and bare soil 
for cultivation). The same training sample dataset was used to implement 
supervised classification of each design of processing image, respectively. 

After classification, an error matrix was used to assess classification accuracy. 
Overall accuracy (OA), producer's accuracy (PA), user's accuracy (UA), and kappa 

PM raw d a u m a g e  preprocessinel +M reflectance dad 

+ + + t + 
l~omparison of classification results derived from fraction images] 

Figure 3. Different image-processing methods for LULC classification. (1) Raw-c 
(C-SMA-1): using constrained. solution in SMA with three endmembers (i.e. 
shade, green vegetation and soil) on raw six-band Landsat TM data; (2) Refc 
(C-SMA-2): using constrained solution in SMA with three endmembers on six-band 
Landsat TM reflectance image; (3) Ref-uc (UC-SMA-3): using unconstrained 
solution in SMA with three endmembers on six-band Landsat TM reflectance image; 
(4) MNFc (C-SMA-4): using constrained solution in SMA with three endmembers 
on the first four MNF components; (5) Subsets (CSMA-5): using constrained 
solution in SMA with three endmembers on bands Landsat TM 3,4,5, and 7; and (6) 
Subset-4c (C-SMA-6): using constrained SMA with four endmembers (i.e. green 
vegetation, shade. bright soil and dark soil) on bands TM 3, 4, 5, and 7. 
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coefficient were calculated for each classification method. KHAT, kappa variance, 
and Z-statistic were used to compare performance among different image 
processing routines. A total of 290 sample sites, covering different LULC types, 
were randomly allocated and examined using field data and IKONOS satellite data. 
A detailed description of the meanings and calculation methods for OA, PA, UA, 
and kappa coefficient or KHAT can be found in the literature (Congalton and 
Mead 1983, Congalton 1991, Janssen and van der We1 1994, Smits et al. 1999, 
Foody 2002). 

5. Results 
5.1. Characteristics of endmember fractions 

The endmember fractions were developed using SMA based on different image 
processing routines. Figure4 gives an example illustrating the fraction character- 
istics of some typical LULC classes in the study area, using the Ref-c method. In 
the soil fraction, 'bare land' had significantly higher values while different 
successional and mature forests have very low soil fraction values. Pasture and 
agricultural lands have relative higher fraction values than those of successional and 
mature forests. In the GV fraction, water and bare land have small fraction values, 
as was anticipated. Mature forest has the lowest GV fraction values (after bare land 
and water) and SSl has the highest GV fraction values. In the shade fraction, water 
has the highest value and bare land the lowest value. Mature forest has a 
significantly higher fraction value and SSl and pastures have lower fraction values. 
SS2 and agriculture have lower values than mature forest but higher values than 
pasture and SSl. The error fraction indicates that high quality fraction images were 
obtained and the results were reliable because the error value for selected LULC 
classes was very small. Overall, water and bare land are the two classes that have 
the most different characteristics in the fraction image when compared with any 
other LULC classes. The distinction between vegetation types (SS and mature 
forest) and pasture or agricultural land is better depicted by the soil fraction, but 
the distinction between different SS stages and mature forest or between pasture 
and agriculture is better defined in the GV and shade fractions. Other fraction 
images derived from different image processing routines have similar trends in 
distinguishing LULC classes. 

5.2. Comparhon of classification accuracies 
An error matrix for each classification method was produced. The UA, PA, OA 

and KHAT accuracy measurements were calculated based on each error matrix and 
were provided in table 1 and kappa analysis results were provided in table2. 
Comparison of the results from atmospherically calibrated and raw images 
indicates that the Rawc and Ref-c methods have similar classification accuracies 
(82.89% versus 82.55%) and similar KHAT coefficients (0.7854 versus 0.7792). 
These results imply that atmospheric correction of Landsat TM bands does not 
improve LULC classification accuracy and such a correction is not required for 
SMA application to LULC classification. Although the Ref-c method produced a 
1.09% higher overall classification accuracy than that of Ref-uc (82.55% versus 
81.46%), the kappa analysis result indicated that they are not significantly different. 
This result suggests that using constrained or unconstrained solutions makes no 
significant difference in LULC classification accuracy. 

Reducing correlation between image bands used in SMA, by using a MNF 
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Figure 4. Fractions of typical LULC classes. SS1-initial successional stage, SS24ntermediate 
successional stage. 

image transformation and excluding use of bands TM 1 and TM 2, resulted in an 
overall classification accuracy increase of 1.4% compared with the Ref-c method. 
However, kappa analysis indicated that these results did not have significant 
difference with that of Ref-c. Analysis of the classification accuracies for each 
LULC class indicated that certain classes; such as pasture and bare land improved 
their classification accuracy. This implies that reducing correlation between images 
used in SMA may be helpful for improving spectral separability between selected 
LULC classes. Use of four endmembers associated with four image bands (i.e. 
Subset-& approach) provided significantly better classification results than using 
Ref-c, Ref-uc, and MLC. The Subset-4c method mainly improved SSl, pasture, 
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Forest 
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Table I. 

Based on Landsat 
TM data 

U A PA 

94.38 98.82 
31.82 53.85 
90.20 69.70 
84.85 73.68 
82.76 77.42 
88.88 100.00 

Comparison of classification accuracy dcrivcd from direrent processing routines. 

Based on fraction images derived from different processing routines 

Rawc Ref* Ref-uc MNF* Subset* Subset-4c 

UA PA UA PA UA PA UA PA UA PA UA PA 

96.59 100.00 96.59 100.00 92.39 100.00 96.55 97.67 96.59 100.00 96.55 98.82 
pl 

34.78 50.00 33.33 57.14 37.50 56.25 37.50 52.94 38.46 58.82 35.71 66.67 
86.00 65.15 93.33 62.69 93.48 65.15 90.00 70.31 91.49 65.15 92.31 70.59 g 
79.07 89.47 79.27 83.33 80.26 79.22 87.18 86.08 81.18 88.46 86.25 88.46 
85.19 76.67 77.42 80.00 78.13 78.13 68.57 82.76 82.76 80.00 86.67 89.66' 
84.74 94.74 75.00 94.74 67.86 95.00 85.71 94.74 85.71 94.74 100.00 88.89 
100.00 83.33 100.00 80.00 100.00 66.67 100.00 80.00 100.00 80.00 100.00 100.00 

82.89 82.55 81.46 84.28 84.33 86.58 
0.7854 0.7792 0.7667 0.8013 0.8016 0.8298 

UA, user's accuracy; PA, producer's accuracy; OA, overall accuracy (%). 
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Table 2. Comparison. of kappa analysis results among different methods. 

Method Code KHAT Variance Combination Zstatistic Result 

Subset-4c (1) 0.8298 0.000608 (1) versus (7) 1.7001 S-90% 
Subset-c (2) 0.8016 0.000679 (1) versus (6) 1.7073 S-W? 
MNF-c (3) 0.8013 0.000678 (1) versus (5) 1.3794 S-80% 
Raw-c . (4) 0.7854 0.000714 (1) versus (4) 1.2203 NS 
Ref-c (5) 0.7792 0.000739 (2) versus (7) 0.91 52 NS 
Ref-uc (6) 0.7667 0.000756 (2) versus (6) 0.9195 NS 
MLC (7) 0.7668 0.000765 (3) versus. (7) 0.9076 NS 

S 9 W  and S_800/o indicate significant at 90% and 80% confdence levels, respectively. NS 
indicates non-significant. 

and agriculture accuracies. This result indicates that adding one more soil 
endmember can improve the classification accuracy for those classes whose soil 
conditions have serious impacts on their reflectance values. 

Overall, Subset-4c, Subset-c, and MNF-c methods provided higher KHAT 
values (greater than 0.8) associated with slightly smaller kappa variances compared 
to the other methods used. In particular, Subset-4c had significantly better, 
classification performance than Ref-c, Ref-uc, and MLC. All other methods do not 
show a significant difference in classification performance. These results suggest 
that selecting suitable image bands and endmembers are the two most important 
elements needed for improving LULC classification accuracy when using SMA for 
LULC classification in moist tropical areas of the Brazilian Amazon basin. 

6. Discussion and conclusio~~s 
The results of this research indicated that high confusion exists among SSl, SS2, 

pasture (e.g. degraded pasture), and agriculture (e.g. coffee plantation) classes. In 
the study area, the majority of successional vegetation was less than 10 years old on 
the 1998 Landsat TM image. Most of the SS2 vegetation was between 6-10 years 
old and most of SSl was less than 5 years. In practice, the transition between SSl 
and SS2 is very smooth and no distinct boundary exists. Also, SSI is often confused 

. with degraded pasture and some perennial crops such as coffee plantations. The 
confusion between bare land and pasture becomes exacerbated by overgrazing 
during the dry season, when soil spectral response contributes more significantly to 
the signature of sparsely covered grassy vegetation. Conversely, degraded pasture 
which is in the process of vegetation recovery often has high densities of Vismia sp. 
and Orbignya sp., thereby increasing its confusion with the spectral response for 
SS1 or even perennial agriculture. Spectral responses for perennial agriculture can 
also be confused with SSl, mainly in areas of initial recovery of disturbed gallery 
vegetation. 

In moist tropical forest areas, vegetation stand structure and species 
composition are very complex. For an optical satellite sensor such as Landsat 
TM, the sensor mainly captures information from the leaves, wood, and shadowing 
information for a dense vegetation area. However, for sparse vegetation, soil and 
litter also can significantly affect reflectance. In a large study area, soil conditions 
can be different and consequently the impacts of soil on feature reflectance can vary 
greatly. Not all components selected are resolvable in a given image because of the 
nature of their mixing and the degree of spectral contrasts found within pixels. 
Thus, different research questions and different characteristics of the selected study 
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area will require use of different endmembers. For example, the endmembers may 
be different for forest dominant regions, agricultural dominant regions and urban 
dominant regions. 

The selection of endmembers can be refined based on the analysis of the error 
fraction or unmodelled spectral variance. For Landsat TM images, selecting more 
than four endmembers is often difficult when using image endmembers. Also, high 
correlation between Landsat TM bands limits the number of endmembers to be 
used in the SMA. However, reducing the correlation among the images used results 
in an improvement of the fraction image and LULC classification accuracy. Linear 
transforms such as PCA and MNF are often used to reduce the correlation between 
images. This is especially necessary when hyperspectral data are used in a SMA. 

In summary, analysis of the classification results indicated that neither 
constrained nor unconstrained least squares solutions and neither atmospherically 
corrected nor raw Landsat TM images produced significantly different classification 
accuracies. However, reducing band correlations using the MNF transformation or 
using Landsat TM band subset images (i.e. bands TM 3, 4, 5, and 7) and four 
endmembers (i.e. GV, shade, bright soil, and dark soil) improved classification 
accuracy. The classification accuracies range from 84.28% to 86.58% for these SMA 
routines. Selecting endmembers appropriately and reducing correlation between 
image bands used are two crucial aspects for developing high quality fraction 
images when SMA is used for LULC classification. This paper contributes to the 
search for better techniques to classify LULC features in complex environments 
such as those found within the Brazilian Amazon basin. 
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