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association with a great number of non-leguminous 
plants, in both tropical and temperate climates (Reis 
Junior et al., 2008). Unlike symbiotic bacteria, they 
excrete only part of the fixed N directly to the plant with 
which they are associated, and it is important to point out 
that the BNF process performed by these bacteria in 
association with Poaceae plants (grasses) is able to meet 
only part of the plant demand for N (Hungria, 2011).  

The increasing interest in the use of inoculants 
containing these bacteria that promote the growth and 
increase plant productivity is due to the high cost of 
chemical fertilizers and the awareness towards a 
sustainable, less polluting agriculture (Hungria, 2011). 
The projections are that in the next years, there will be a 
substantial increase in the use of fertilizers in Brazil in 
order to meet the intensification in agriculture. Therefore, 
it is essential to find alternatives for the more efficient use 
of fertilizers and, in this context, atmospheric nitrogen-
fixing bacteria can play an important and strategic role to 
guarantee high productivities and low costs, with less 
dependence on agricultural inputs. It is estimated that the 
savings resulting from the inoculation with these bacteria 
in grasses can be of about 2 billion dollars a year 
(Hungria, 2011). 

The possibility of significant increases in nitrogen 
availability through BNF in grasses, such as rice, wheat, 
corn, sorghum and sugarcane, has been reported by 
many authors (Hungria et al., 2010; Dalla Santa et al., 
2008; Sala et al., 2005; Reis Junior et al., 2008; Xavier, 
2006; Lana et al., 2012; Ferreira et al., 2011).  

Based on the aforementioned issues, the use and 
knowledge on these bacteria that supply N through 
biological fixation and increase fertilizer use efficiency, as 
an alternative for nitrogen nutrition in grasses, represent 
a viable economic strategy and one of the most important 
tactics in the world nowadays. Thus, this review aims to 
address the characteristics of diazotrophic bacteria 
(nitrogen-fixing), their form of action as endophytic 
microorganisms and their contribution when associated 
with grasses of economic importance. 
 
 
DIAZOTROPHIC BACTERIA 
 
Diazotrophic bacteria can be found either distributed in 
the environment (free-living bacteria) or associated with 
plants (endophytic bacteria). These microorganisms have 
nitrogenase enzymatic complex and thus are known as 
nitrogen fixers. 

Unlike rhizobium in symbiosis with leguminous plants, 
diazotrophic bacteria do not form nodules and colonize 
from roots to leaves, from the rhizosphere to plant tissue. 
In this second case, bacteria are called endophytic and it 
is believed that these are responsible for the gain in N 
through BNF observed in many crops. The division of the 
term into facultative and obligate endophytes was proposed 
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to distinguish, respectively, strains able to colonize both 
the surface and the interior of the root, which colonize the 
interior and the aerial part of plant tissues without issuing 
any symptom of pathogenicity (Baldani et al., 1997). 
These microorganisms can readily deliver to plants the 
fixed N and other growth-promoting molecules (BaldaniI 
et al., 1997).  

It is known that the associations involving diazotrophic 
bacteria occur in different interaction degrees and, in 
many cases, are related to the specificity of interaction 
between microbe and host plant genetic characteristics 
(Olivares et al., 1997). Low-specificity diazotrophic 
bacteria usually colonize superficial areas of the plant, 
and some strains of Azospirillum are found inside plants, 
thus being referred to as facultative endophytes. These 
bacteria preferably colonize plant rhizoplane and rhizo-
sphere, due to the accumulation of a variety of organic 
compounds released by roots through exudation, 
secretion and deposition (Dobbelaere et al., 2003). 
Bacteria that preferably colonize internal plant tissue are 
called obligate endophytes, like Gluconacetobacter 
diazotrophicus, Herbaspirillum spp., Azoarcus spp. and 
Burkholderia spp., and generally have a limited spectrum 
of host plants (Baldani et al., 1997). 

The capacity of colonizing internal plant tissue can 
confer on these obligate endophytic bacteria ecological 
advantages over the others. Internal plant tissues provide 
a more uniform and protected environment for micro-
organisms than the surface does, where they are 
exposed to the extreme environmental conditions of 
temperature, osmotic potential, ultraviolet radiation and 
microbial competition, which are the most limiting factors 
to the survival of bacteria along time (Cocking, 2003). 

In addition to the capacity for BNF, diazotrophic 
bacteria associated with grasses stimulate plant growth 
directly by: a) producing growth hormones like auxins, 
gibberellins and cytokinins (Dobbelaere et al., 2003; 
Khaliq et al., 2004; Donate-Correa et al., 2004; Radwan 
et al., 2004; Creus et al., 2004), which particularly 
stimulate root growth, increasing root hair density and the 
emergence rate of secondary roots, which leads to better 
water and nutrient absorption, increasing plant production 
and its capacity to tolerate environmental stress 
(Dobbelaere et al., 1999); b) acting in the solubilization of 
zinc phosphates and oxides (Rodriguez et al., 2004; 
Baldotto et al., 2010), excreting organic acids and their 
associated protons, which directly dissolve the phosphate 
material and zinc oxides, which later can be made 
available to plants, since these ions are soluble in acid 
environments (Vassilev and Vassileva, 2003; Vessey, 
2003), and c) increasing nitrogen reductase activity when 
occurring endophytically in plants (Cássan et al., 2008). 

Furthemore, diazotrophic bacteria stimulate plant 
growth indirectly by: a) acting in the biological control of 
pathogens (Mariano et al., 2004; Correa et al., 2008) 
through various mechanisms like production of chitinases, 
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glucanases and antibiosis, and b) synthesis of 
siderophores, which are molecules secreted by micro-
organisms that sequestrate low molecular weight Fe and 
make it available to plants in the form of a siderophore-
Fe3+ complex, acting in plant growth and immobilizing the 
Fe that would be available for phytopathogen proliferation 
(Vessey, 2003). 

In general, it is believed that diazotrophic bacteria pro-
mote plant growth through a combination of all of these 
mechanisms (Dobbelaere et al., 2003). 
 
 
BIOLOGICAL NITROGEN FIXATION  
 
Although gaseous nitrogen (N2) constitutes 78% of the 
atmosphere, no animal or plant can use it as nutrient, 
because of the triple bond that exists between the two 
atoms of the N2, which are one of the strongest bonds 
that can be found in nature (Hungria, 2011).  

For BNF to occur, the N triple bond must be broken and 
then three atoms of H are bound to each N, forming 2NH3 
(ammonia). For this, the host plant gives carbohydrates 
to the microorganism, which in turn breaks N2 triple bond 
through a biochemical system (nitrogenase complex), 
delivering ammonia (NH3) to the plant in return (Nunes et 
al., 2003). 

It is believed that N2 biological reduction happens in 
three steps: 1) reduction of Fe-protein I by ferredoxins; 2) 
transfer of electrons of Fe-protein I to Fe-Mo protein II; 
and 3) the actual reduction of the substrate in the active 
site of the Fe-Mo protein (to which N2 binds in the 
presence of the electrons that will be used to break the 
triple bond) (Nunes et al., 2003). 

In the cases of obligate (e.g. Herbaspirillum spp.) or 
facultative (e.g. Azospirillum spp.) endophytic bacteria, 
the same nitrogenase complex converts atmospheric N2 
into ammonia. Nevertheless, unlike symbiotic bacteria, 
associative bacteria excrete only part of the fixed nitrogen 
directly to the plant they are associated with; later, 
bacteria mineralization can contribute to additional N 
supply to plants (Hungria, 2011).  
 
 
CONTRIBUTION OF BIOLOGICAL NITROGEN 

FIXATION TO GRASSES OF ECONOMIC 
IMPORTANCE 
 
The studies with diazotrophic bacteria related to grasses 
in Brazil began in early 1950, with the isolation of 
Azobacter in acid soils from the Baixada Fluminense 
(Dobereiner, 1953). However, it was only from 1970s on 
that these bacteria gained worldwide prominence, when 
the Embrapa researcher Dr. Joana Dobereiner (1924-
2000) discovered the biological nitrogen fixation capacity 
of the genus Azospirillum when associated with grasses. 
Since  then,  the  world   scientific  community,  aiming  to 

 
 
 
 
identify new bacteria (Govindarajan et al., 2008), has 
done many studies. Currently, it is known that various 
species of bacteria are able to establish associations with 
many grasses (Bhattacharjee et al., 2008). 

However, in this review we highlight only the contribu-
tions from the biological nitrogen fixation and (or) from 
the growth-promoting effect, by the synthesis of phyto-
hormones in the main grasses of economic importance. 

In studies conducted in India, Govindarajan et al. 
(2008) observed increases of 40 and 42% in the 
contribution of BNF in rice plants inoculated with 
Burkholderia vietnamiensis in pots and field, respectively. 
In 2006, Govindarajam and co-workers verified an 
increase of 20% in sugarcane dry mass production when 
inoculated with B. vietnamiensis in field conditions, but 
BNF was not quantified. 

In Argentina, García de Salamone and Dobereiner 
(1996) tested four corn genotypes inoculated with 
Azospirillum regarding BNF contribution, using soil 
marked with 15N, and observed significant BNF 
contributions of 58.3 and 48% for the genotypes Dekalb 
4D70 and CMS 22, respectively. 

In Uruguay, Montanez et al. (2009) tested nineteen 
corn genotypes under greenhouse conditions, using the 
15N-isotope dilution technique, and verified that the 
percentage of N from the air ranged from 12 to 33%, 
showing that corn can obtain significant amounts of N 
through the BNF.  

In Egypt, El-Komy et al. (2003) quantified BNF in wheat 
plants inoculated with the Z-78 strain of Herbaspirillum 
seropedicae in greenhouse conditions, through the 15N-
isotope dilution technique, and found accumulations of 
24.6 and 26.5% of N from the BNF in leaves and grains, 
respectively. 

In Brazil, Alves (2007), through the 15N natural 
abundance technique, observed that the inoculation of H. 
seropedicae increases the contribution of N from BNF in 
67 and 44% in experiment with corn in the first and 
second cropping seasons, respectively. In 2011, Alves 
found that the inoculation with the BR11417 strain of H. 
seropedicae in corn contributed in average with 26% of 
the N required for crop development.  

Xavier (2006) verified that the average contribution of 
BNF ranged from 7 to 19% using the 15N-isotope dilution 
technique and from 24 to 53% using the 15N natural 
abundance technique in ten varieties of sugarcane. 
Oliveira et al. (2006) evaluated the effect of the 
inoculation with a bacteria mixture in micropropagated 
material of the varieties SP 70-1143 and SP 81-3250 
using the 15N natural abundance technique in different 
soil types, and verified that the BNF contributed with up 
to 38% of the nitrogen. However, there were cases in 
which the BNF was much lower or null as a function of 
bacteria mixture inoculation, soil type and fertilization 
(Oliveira et al., 2006). 

Using  the  strategy  of  combining  inoculation  and  the 



 

 

 
 
 
 

application of nitrogen fertilizers, Dalla Santa et al. 
(2004a) found the possibility of substitution of up to 40% 
of the recommended N dose for corn in experiments 
using the RAM-7 and RAM-5 strains of Azospirillum sp. 
For barley, the presence of the inoculant based on the 
RAM-7 strain of Azospirillum sp. substituted 20% of the 
recommended N fertilization (Dalla Santa et al., 2004b). 
For wheat, this same inoculation associated with 48 kg 
ha-1 of N promoted productivity similar to that obtained in 
the treatment with 60 kg ha-1 of N, with or without 
inoculation, suggesting the possibility of partial substi-
tution of inorganic nitrogen fertilization (Dalla Santa et al., 
2008). Ferreira et al. (2011) verified that the inoculation 
with the ZAE94 strain of H. seropedicae was able to 
supply up to 50 kg ha-1 of N, depending on the rice 
cultivar used. Working with corn and wheat in 
greenhouse conditions, Riggs et al. (2001) verified that 
the inoculation with H. seropedicae promoted increases 
in dry mass production from 49 to 82%, when applied 
along with the nitrogen fertilizer. Dobbelaere et al. (2002) 
verified that the effect of the inoculation with the Sp 245 
strain of Azospirillum brasilense and the KBC1 strain of 
Azospirillum irakense in corn plants was higher when 
associated with nitrogen doses. Sabino and co-workers 
(2012) also observed that the inoculation with the M130 
strain of H. seropedicae combined with nitrogen 
fertilization led to better results regarding development 
and grain production of the rice cultivars IR42 and 
IAC4440. 

Although it is not a consolidated agricultural practice, 
especially in Brazil, commercial inoculants containing 
mixture of diazotrophic bacteria were launched in the 
global market. In the United States, a product named 
Azo-GreenTM was produced and recommended to 
increase seed vigor, root system establishment, resis-
tance to frost and improvement in plant health (Reis, 
2007). In Italy, Germany and Belgium a product named 
Zea NitTM containing a mixture of A. brasilense (CD 
strain) and Azospirillum lipoferum (BR17 strain), in liquid 
and peat formulations, was developed by the company 
Heligenetics and recommended to reduce in 30 and 40% 
nitrogen application required by the crop. Another product 
based on Azospirillum, strain CRT1, was launched in 
France.  

In Mexico, an inoculant based on Azospirillum was 
developed by the University of Puebla and has been 
successfully used for corn, wheat and barley. Still in 
Mexico, a company named Asia commercializes a 
product for corn and sorghum and another one for wheat 
and barley, containing a mixture of strains of A. 
brasilense (Reis, 2007). In Argentina, a product named 
GraminanteTM, was launched based on calcium 
carbonate powder, containing a mixture of strains of 
Azospirillum, that is able to increase grain production in 
nearly 20% (Reis, 2007). In India, many industries 
produced biofertilizers containing Azospirillum for various 
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crops and even Gluconacetobacter for sugarcane (Reis, 
2007). In Brazil, Embrapa Soybean in partnership with 
the private company Total Biotecnologias launched a 
liquid inoculant containing the strains Ab-V5 and Ab-V6 of 
Azospirillum brasilense and many other companies have 
been developing formulations and performing agronomic 
efficiency tests with these same strains (Hungria, 2011). 

However, various studies have shown both interesting 
and promising results. In the study of Hungria et al. 
(2010), the inoculation with the V5 and V6 strains of A. 
brasilense promoted an increase of about 30 and 18% in 
the average grain yield of corn and wheat, respectively, 
as compared to the control treatment, without inoculation. 
Dotto et al. (2010) verified that the inoculation with H. 
seropedicae in corn promoted an increase of 8.6% in the 
productivity of the hybrid AS 1540. Zilli et al. (2008) 
showed that the inoculation of corn seeds with H. 
seropedicae contributed significantly to the increase in 
grain yield for the hybrid BRS1010, but not for the variety 
BRS 4157. Pedraza et al. (2008), working with rice, also 
reported that the inoculation with Azospirillum spp. 
increases grain yield as compared to the control (without 
either N or inoculant). 

There are countless positive effects of the inoculation 
with diazotrophic bacteria in association with grasses. 
Lana et al. (2012) showed that the inoculation with A. 
brasiliense promoted increase in grain productivity and 
dry mass of corn plants of 26 and 7.2%, respectively. 
Reis Junior et al. (2008) observed that the inoculation 
with Azospirillum amazonense led to significant increase 
in dry mass production and root nitrogen content in corn 
plants cultivated in greenhouse and harvested 25 days 
after planting. Braccini et al. (2012) found relative 
increase in dry mass production with the inoculation of A. 
brasilense in corn seeds. Guimarães et al. (2007), 
working with rice in greenhouse conditions, observed 
increases of up to 34% in total shoot nitrogen of plants 
inoculated with the ZAE 94 strain of H. seropedicae, as 
compared to the absolute control. Guimarães et al. 
(2010) observed that the inoculation with H. seropedicae 
and Burkholderia sp. contributes to increases in dry 
mass, nitrogen accumulation and grain production of the 
rice cultivars IR42 and IAC4440. Dobbelaere et al. (2001) 
verified increases in the contents of N, P and K of corn 
leaves when working with bacteria of the genus 
Azospirillum; while Francisco et al. (2012) found increase 
in Zn concentrations of corn leaves when inoculated with 
A. brasilense + 30 kg ha-1 of N. Guimarães (2006) 
observed increases of 64% in grain nitrogen 
accumulation of rice plants (variety IR 42) inoculated with 
the ZAE 94 strain of Herbaspirillum seropedicae and 
fertilized with 50 kg ha-1 of N, as compared to the control, 
without either inoculation or fertilization. 

Increases in dry mass production and productivity in 
response to the inoculation can be attributed to the 
stimulus  that  diazotrophic  bacteria  give  to  root system 
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development, with the increase in root hair density, 
length, volume and number of lateral roots, resulting in 
higher capacity to absorb and use water and nutrients, as 
reported by Huergo et al. (2008). 

Despite the encouraging results, the use of inoculants 
containing these bacteria as a common practice in 
agriculture requires a careful critical analysis due to the 
high variability usually observed in the response of 
different plant genotypes under different soil and climate 
conditions (Oliveira et al., 2006). Indeed, the reasons for 
the variability in the responses of grasses to BNF have 
not been fully elucidated yet. It has been suggested that 
the plant genotype and environment interaction exercises 
a decisive role on the efficiency of diazotrófico 
(Gyaneshwar et al., 2002). 
 
 
CONCLUSIONS 
 
BNF behaves as an important source of N to the plant 
system and, with adequate management and the use of 
BNF-efficient genotypes, it is possible to reduce nitrogen 
fertilization in grasses. 

Investment in research and diffusion of BNF, through 
multidisciplinary and integrated studies can bring great 
benefit to the planet, increasing food production, reducing 
the use of fossil fuels and the contamination of water 
resources, by decreasing the use of external sources of 
nitrogenous fertilizers. 

Therefore, the exploration and use of BNF in agricul-
tural systems aiming to complement the N from industrial 
fertilizers is an essential, environmentally friendly and 
economically viable strategy. 
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