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ABSTRACT: The objective of this study was to compare a 
conventional genomic model (GBLUP) and its extension to 
a linear reaction norm model (GLRNM) specifying 
genotype by environment interaction (G*E) for tick 
resistance in Brazilian cattle. Tick counts (TC) from 4,363 
Hereford and Braford cattle from 146 contemporary groups 
(CG) were available of which 3,591 animals had 
BovineSNP50 Illumina v2 BeadChip genotypes. The 
reaction norm covariate was based on CG estimates of TC 
from a first-step model. Analysis was conducted based on 
adapting the single step GBLUP/REML procedure. Five-
fold cross validation based on K-means and random 
partitioning was used to compare the fit of the two models. 
Cross validation correlations were strong and not 
significantly different between models for either 
partitioning strategy. Nevertheless, it seems apparent that 
G*E for tick infestation exists and can captured by 
GLRNM models. 
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Introduction 
In beef cattle production the bovine tick 

Rhipicephalus (Boophilus) microplus can greatly diminish 
animal performance beyond parasite resistance due to 
repeated use of treatments with acaricides. Furthermore, 
repeated failures of effective vaccines development had 
driven researchers to seek for alternative solutions.  

Previous work have demonstrated the existence of 
genetic variability for tick resistance (Budeli et al. (2009); 
Oliveira et al. (2012)) with estimated heritabilities ranging 
from 0.05 to 0.42 thereby implying the feasibility of 
genetic improvement for this trait. Mota et al. (2013) has 
recently suggested genotype by environment interaction 
(G*E) exists for this trait of a nature that can be captured 
using linear reaction norm models (LRNM). 

Genome wide selection (GWS) is a powerful tool 
that could be further used to enhance the accuracy of 
genomic prediction on tick resistance. So far, there has 
been little work incorporating GWS information in LRNM 
which might be necessary to fine tune GWS for specific 
environments. The objective of this study was to compare 
a conventional genomic-based BLUP (GBLUP) model 
(GBLUP) to its genomic LRNM extension (GLRNM) 
using tick infestation data. 

 
Material and methods 

Phenotypes were obtained from genetic breeding 
program conducted by Delta G Connection and consisted 
of tick counts (TC) from 4,363 Hereford and Braford cattle 

born between 2008 and 2011. TC were obtained between 
326 and 729 days of age, consisting of the count of all 
engorged female ticks ≥ 4.5 mm on one side of the animal. 
Tick infestations were acquired naturally and from one to 
three TC were collected on each animal with a minimum 
interval of 30 days between each TC. The variable used for 
analysis was log transformed such that, LTTC = log10 
(TC+1.001).  

Genotypes based on the BovineSNP50 Illumina 
v2 BeadChip were acquired on 3,591 of these cattle. After 
various quality control edits, 41,045 SNPs remained and 
were used to estimate genomic relationship coefficients 
between animals. Genomic information was combined 
together with pedigree information using the single-step 
procedure of Aguilar et al. (2010) where the genetic 
relationships based on pedigree are adjusted for deviations 
due to genomic information. Cross validation prediction 
accuracy was evaluated by two different 5-fold cross 
validation strategies. One strategy was based on the K-
means procedure of Saatchi et al. (2011) that minimizes 
genetic ties between training and validation subsets 
whereas the other strategy was based on random partitions 
of training and validation data sets. 

Cross validation accuracy (ry,ŷ) was defined as the 
correlations between observed (y) and predicted 
phenotypes (ŷ) in the validation datasets, based on 
estimates derived from training datasets.  
 

 
 

 
The fit of the GBLUP and GLRNM were 

compared using Akaike Information Criterion (AIC). In 
order to implement GLRNM, solutions to the 146 random 
CG effects from GBLUP were used as “known” covariates 
for the reaction norm specification in the GLRNM 
(Kolmodin et al. (2002)). Both GBLUP and GLRNM fitted 
additive genetic, permanent environment and CG level 
(herd-year-season-sex-management) as random intercept 
effects and Nellore percentage, heterozygosity, epistatic 
loss and linear and quadratic effects of age as covariates 
whereas GLRNM additionally included random genetic 
and permanent environmental slope effects on the reaction 
norm, allowing for covariances between these slopes and 
the corresponding random intercepts. 

The heritability (h2|wi) and repeatability (r|wi) for 
a specific environment were calculated, respectively as 
follow: 
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where σ2

ge|wi, and σ2
pe|wi are the additive genetic and 

permanent environment variances, respectively, for a 
specific environment i, whereas σ2

e  denotes the residual 
variance. Here, wi was defined as contemporary groups 
(CG) estimates (ŵi) obtained by GBLUP analysis. The 
environmental burdens (EB) were divided as low, medium 
and high tick infestation. The strategy chosen was based 
on values less than the 10th (i.e., ŵi  ≤ -0.408 LTTC), 
between the 10th and 50th (i.e., -0.408≤ ŵi ≤0.035 LTTC) 
and greater than 90th (i.e., ŵi ≥ 0.320 LTTC) percentiles as 
low, medium and high tick infestation, respectively. In 
addition, the genetic merit and producing abilities (sum of 
additive and PE effects) of TC for each animal were also 
predicted. 

The estimation of (co)variance components and 
genetic parameters were performed by restricted maximum 
likelihood (REML; Patterson and Thompson, (1971)) 
utilizing airemlf90 software (http://nce.ads.uga.edu/). 
Furthermore, preGSf90 software from this same source 
was used to calculate the genomic relationship 
coefficients. 

 
Results and discussion 

GBLUP appeared to be a poorer fitting model 
compared to GLRNM based on a lower Akaike´s criterion 
(5589.1214 vs. 5407.2545). Hence, it seems necessary to 
consider G*E for genetic evaluations of tick resistance in 
Hereford and Braford beef cattle.  

GBLUP and GLRNM intercept variances for 
additive genetic and permanent environment effects were 
rather similar, as anticipated, whereas significant slope 
variance components were determined using GLRNM, 
thereby again indicating G*E to be driven by EB as 
defined by TC (Table 1). However, the GLRNM model 
did not present considerable re-rankings of  genetic merit 
across environments (Figure 1) suggesting perhaps that use 
of GLRNM would not accelerate genetic progress in 
specific environments relative to the use of GBLUP, given 
that the same breeding stock would be selected for all 
environments by both models.  Nevertheless, Figure 1 also 
demonstrates that genetic merit also depends upon EB and 
that differences in GEBV between animals decrease with a 
low EB. It further indicates the difficulty to identify 
superior breedstock in better (i.e., low EB) environments. 
Furthermore, although G*E did not indicate significant re-
rankings in genetic merit, the same was not true for 
producing ability. The negative covariance between 
intercept and slope for permanent environment effect lead 
to substantial re-ranking between animals (Figure 2). 

 
Figure 1: Genetic merit reaction norms of all animals 
in data set. 

 
Figure 2 Production ability reaction norms of all 
animals in data set. 

 
The use of homocedastic error models as those 

fitted in this study, could lead to biased inferences on 
variance components and hence genetic parameters. Thus, 
fitting more complex models such as those considering 
heterogeneity of residual variance and hierarchical 
Bayesian models based on 1-step approach (Su et al., 
(2006)) which treat the covariate associated with the 
reaction norm as unknown and allows inferring for all 
unknowns parameters together, may result in better-fitting 
models and help better describe the presence of G*E for 
tick resistance.  
Table 1. Variance component (VC) estimates and 
standard errors for the parameters of conventional 
genomic (GBLUP) and 2-step linear reaction norm 
model (GLRNM).  

VC GBLUP GLRNM 
σ2

ige
1 0.014 (0.002) 0.014 (0.002) 

σ2
sge

2 N/A        0.020 (0.010) 

σisge
3 N/A 0.004 (0.003) 

σ2
ipe

4 0.015 (0.002) 0.014 (0.002) 
σ2

spe
5 N/A 0.077 (0.013) 

σispe
6 N/A -0.013 (0.003) 

σ2
e
7 0.072 (0.001) 0.064 (0.001) 

1σ2
ige: additive genetic intercept variance 

2σ2
sge: additive genetic slope variance 

3σisge: additive genetic covariance between intercept and slope 
4σ2

ipe: permanent environment intercept variance 
5σ2

spe: permanent environment slope variance 
6σispe: permanent environment covariance between intercept and slope 
7σ2

e: residual variance 
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Heritability estimates (h2) as a function of CG 
levels slightly differed from GBLUP (h2= 0.14) with 
h2=0.12 for low environmental burden (TC= -0.408), 
h2=0.13 for medium environmental burden (TC= 0.035), 
h2=0.15 for high environmental burden (TC= 0.320). 
These results indicate that selection response might only 
change slightly according to the model fitted, GBLUP or 
GLRNM and also within GLRNM burdens. 

 The repeatabilities estimates were 0.30 under 
GBLUP and 0.44, 0.44 and 0.46 for GLRNM under low, 
medium and high environmental burdens which suggest 
that more than one TC on the body side is useful to model 
non-genetic and/or permanent environmental effects that 
might lead to the producing ability re-rankings across 
environments presented earlier (Figure 2), thereby having 
rather strong implications for management strategies.  

Cross-validation correlations (ryŷ) within each of 
GBLUP and GLRNM were strong and the means and 
standard errors across replicates are presented in Table 2. 
Those correlations tended towards statistically significance 
between the two models under the K-means cross-
validation partitioning strategy (P=0.07) whereas there 
was no evidence of a difference based on random 
partitioning (P=0.18). These results may reflect poor 
power with a low number (5) of cross-validation 
replicates. Silva et al. (2014) found higher genomic 
prediction accuracies for reaction norm models compared 
to a standard animal model in pigs. These authors also 
reported accuracy differences among EB with higher 
values in intermediate burdens.  
 
Table 2. Cross validation correlations between 
observed (y) and estimated (ŷ) phenotypes, means and 
standard errors in a 5-fold cross validation using K-
means and random partitioning (in bold) for 
conventional genomic model (GBLUP) and a 2-step 
reaction norm model (GLRNM). 

M1/F2 F1 F2 F3 F4 F5 Mean 

GBLUP 
0.75 
0.70 

0.64 
0.71 

0.68 
0.71 

0.65 
0.71 

0.66 
0.73 

0.68±0.02 
0.71±0.01 

GLRNM 
0.74 
0.69 

0.64 
0.71 

0.67 
0.71 

0.64 
0.70 

0.66 
0.73 

0.67±0.02 
0.71±0.01 

1M: model 
2F: fold 
 

 

Genomic accuracy of predictions were generally 
higher using random than K-means partitioning for 
GBLUP and GLRNM (Table 1). This may be due to a 
greater occurrence  of cross validation within CG using 
random partitioning with strong genetic relationships for 
animals between training and validation populations 
compared to a cross validation across CG. These values 
are in agreement with Saatchi et al. (2011) which reported 
substantial accuracy variation between groups in which 
lowest accuracies were found in groups which individuals 
were less related each other. 

 
Conclusion 

We inferred the presence of genotype by 
environment interaction for tick resistance in Hereford and 
Braford beef cattle based on genomic reaction norm 
models.  Our results suggest that the accuracy of prediction 
will decrease as the tick infestation level increases and as 
the relationship between animals in training data set with 
validation dataset decreases. 
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