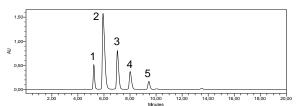
Antocianinas nas folhas vermelhas de *Euphorbia pulcherrima* Willd. ex Klotzsch

Helena de Souza Torquilho¹(FM), Ana Cristina Miranda Senna Gouvêa²(PG), Luciana Mouta de Oliveira³(PG), Ronoel Luiz de Oliveira Godoy⁴(PQ), Sidney Pacheco⁴(PG), Allien Monique Rosa Machado¹(IC). *helena.torquilho@ifrj.edu.br

¹Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro - Campus Nilópolis,²Universidade Federal Rural do Rio de Janeiro-Seropedica-RJ,³Universidade Federal do Estado do Rio de Janeiro-Rio de Janeiro-RJ, ⁴Embarapa Agroindústria de Alimentos-Rio de Janeiro-RJ


Palavras Chave: Bico de papagaio, antocianinas, massas exatas.

Introdução

A Euphorbia pulcherrima Willd. ex Klotzsch, popularmente conhecida como bico de papagaio, pertence à família Euphorbiaceae. É uma planta ornamental muito apreciada devido a coloração avermelhada de suas folhas¹. A coloração intensa apresentada por algumas plantas assume um papel importante em seu mecanismo de reprodução, como a polinização e a dispersão de sementes. As antocianinas, uma subclasse dos flavonoides, são responsáveis por inúmeras tonalidades de cores encontradas em flores, frutas e folhas e têm tido grande destaque devido as suas propriedades benéficas à saúde^{2,3}. O objetivo deste trabalho foi identificar e quantificar, por Cromatografia Líquida de Alta Eficiência (CLAE), e massas exatas as antocianinas presente nas folhas de Euphorbia pulcherrima.

Resultados e Discussão

As folhas vermelhas de *Euphorbia pulcherrima* foram coletada no bairro da Tijuca, Município do Rio de Janeiro-RJ. As antocianinas foram extraídas das folhas com uma solução de 10% Ácido fórmico em metanol⁴. Para a identificação das antocianinas utilizou-se a cromatografia líquida de alta eficiência com detector de arranjo de fotodiodos (DAD), utilizando uma coluna C₁₈ de 10cm (Thermo[®]) e diâmetro de partícula de 2,4 micrometros. As fases móveis foram: uma solução 5% de ácido fórmico em água e a outra 10% de metanol em água. O cromatograma obtido apresentou cinco antocianinas (Figura 1).

Figura 1: cromatograma do extrato das folhas de *Euphorbia pulcherrima*. 1- cianidina-3-galactodídeo, 2- cianidina-3-glicosídeo, 3- cianidina-3-rutenosídeo, 4- pelargonidina-3-glicosídeo e 5- pelargonidina-3-rutinosídeo

A confirmação das cinco antocianinas foi por massas exatas, (tabela 1) utilizando um detector de massas de alta resolução Waters Synapt q-TOF/ M^2 com fonte de ionização no modo eletronebulização positiva (ESI+) e tempo de Voo em V. As condições de operação do massas foram: temperatura da fonte igual a 120° C, gás de dessolvatação N_2 a 500° C, e energia de colisão de 10eV.

Tabela 1: identificação das antocianinas, comparação das massas calculada e observadas

Pico	Nome	Tempo de retenção	massa Calculada	massa Observada
1	Cianidina 3-galactosídeo	5,224	449,1084	449,1057
2	Cianidina 3-glicosídeo	5,936	449,1084	449,1057
3	Cianidina 3-rutenosídeo	7,035	595,1663	595,1379
4	Pelargonidina 3- glicosídeo	8,017	433,1134	433,0941
5	Pelargonidina-3- rutenosídeo	9,444	579,1714	579,1537

Conclusões

Foram identificadas cinco antocianinas nas folhas vermelhas de *Euphorbia pulcherrima* Willd. ex Klotzsch sendo a de maior concentração a cianidina-3-glicosídeo.

Agradecimentos

Embrapa Agroindústria de Alimentos, Instituto Federal do Rio de Janeiro campus Nilópolis e CNPq.

⁴Brito , E. S.; Araujo, M. C. P.; Alves, R. E.; Carkeet, C.; Clevidence, B. A.; Novoty, *J. A. Journal of Agriculture and Food Chemistry.* **2007**, 55, 9389-9394.

¹Bittner, M. et al., *Bol. Soc. Chil. Quím., Concepción.* **2001,** v. 46, n. 4.

 ²Lopes, T. J.; Xavier, M. F.; Quadri, M. G. N.; Quadri, M. B., *R. Bras. Agrociência, Pelotas.* 2007, jul-set, v.13, n.3, p. 291-297,.
³Santiago, M. C. P. A. [Dissertação]. Rio de Janeiro (RJ): Universidade Federal do Rio de Janeiro. 2010.