

ESTADO NUTRICIONAL DE MUDAS DE PINHEIRA EM TUBETES EM FUNÇÃO DE DOSES DE ADUBO DE LIBERAÇÃO LENTA

MARINA MONTEIRO FEITOSA¹; FERNANDO JOSÉ HAWERROTH²; DANYELLE DE SOUSA MAUTA³; LUIZ AUGUSTO LOPES SERRANO⁴; CARLOS ALBERTO KENJI TANIGUCHI⁵

8 INTRODUÇÃO

A pinheira (*Annona squamosa L.*) é uma frutífera de pequeno porte típica de clima tropical e entre as espécies anonáceas é considerada a mais expressiva economicamente no Brasil. Sua exploração está mais voltada ao comércio de fruta fresca, pois a pinha ou ata é mais consumida in natura. Assim, é de extrema importância a utilização de mudas com elevado padrão de qualidade morfofisiológica e fitossanitária na implantação de pomares (HAWERROTH et al., 2013).

Para a cultura da pinheira, Lemos et al. (2010) observaram desenvolvimento adequado das mudas quando tubetes são utilizados como recipientes, no entanto, perdas de nutrientes ocorrem por meio de lixiviação e dessa forma, é necessário manejo adequado da adubação. Com a utilização de adubo de liberação lenta, os nutrientes são liberados continuamente, diminuindo a ocorrência de deficiência nas plantas, as perdas por lixiviação e as aplicações parceladas de outros fertilizantes, reduzindo os custos operacionais (MENDONÇA et al., 2008).

Com este trabalho, objetivou-se avaliar o estado nutricional de mudas de pinheira em função da aplicação de adubo de liberação lenta.

MATERIAL E MÉTODOS

O experimento foi conduzido no viveiro de mudas do Campo Experimental do Curu, localizado no município de Paraipaba/CE e pertencente à Embrapa Agroindústria Tropical. O delineamento experimental foi o de blocos casualizados com cinco doses do adubo de liberação lenta Osmocote[®] (0; 3; 6; 9 e 12 kg m⁻³ da fórmula NPK 14-14-14) e com quatro repetições. Cada unidade experimental foi composta por 16 plantas.

⁽¹⁾ Estudante de graduação em Agronomia; UFC - CE; e-mail: marinamonteirof@gmail.com;

⁽²⁾ Dr., Pesquisador; Embrapa Agroindústria Tropical; Fortaleza, CE; e-mail: fernando.hawerroth@embrapa.br;

⁽³⁾ Estudante de graduação em Agronomia; UFC - CE; e-mail: danyellemauta@hotmail.com;

⁽⁴⁾ Dr., Pesquisador; Embrapa Agroindústria Tropical; Fortaleza, CE; e-mail: luiz.serrano@embrapa.br;

⁽⁵⁾ Dr., Pesquisador; Embrapa Agroindústria Tropical; Fortaleza, CE; e-mail: carlos.taniguchi@embrapa.br;

As sementes de pinheira foram obtidas de frutos coletados em pomar comercial localizado em Limoeiro do Norte/CE, selecionando-se as sementes com comprimento entre 16 mm e 18 mm, sendo embebidas em solução com ácido giberélico a 750 mg L⁻¹, durante 16 horas, para uniformização da germinação.

O substrato utilizado para a produção das mudas de pinheira foi o comercial Forth[®] (condicionador de floreiras) à base de casca de pinus e cinzas. Tubetes com capacidade para 288 cm³ foram preenchidos com a mistura e adicionaram-se duas sementes por tubete na profundidade de 2 cm. Durante a condução do experimento, realizou-se a irrigação por microaspersão duas vezes ao dia, de manhã e a tarde.

Aos 90 dias após a semeadura (DAS), as plantas foram separadas em folhas, caule e raízes, lavadas, secas em estufa de circulação forçada de ar a 65°C, até peso constante. Em seguida, o material vegetal foi moído e submetido à análise química para a determinação das concentrações totais de macro e micronutrientes, conforme procedimentos descritos em Miyazawa et al. (2009). Os dados obtidos foram submetidos à análise de variância e concentração nas folhas e o acúmulo de nutrientes nas mudas de pinha (folhas + caule + raízes) foram avaliadas por meio de análise de regressão, a 5% de probabilidade.

RESULTADOS E DISCUSSÃO

O adubo de liberação lenta influenciou a concentração de macro e micronutrientes nas folhas de pinha, com exceção do Mg (Tabela 1). As concentrações de N, K e de Mn foram influenciadas positivamente pelas doses de adubo de liberação lenta. Para os demais nutrientes, as concentrações diminuíram com o aumento das doses, provavelmente devido ao "efeito diluição", em que a concentração de nutrientes é diluída em virtude do maior crescimento da planta (JARREL; BEVERLY, 1981), ou seja, a velocidade de produção de matéria seca foi maior que a de absorção ou transporte do nutriente. As concentrações de N, P, S, Fe e Mn nas folhas de pinha foram mais baixas que as encontradas por Silva & Silva (1986), que eram de 36; 1,8; 2,3 g kg⁻¹; 152 e 253 mg kg⁻¹, respectivamente. Para os demais nutrientes, as concentrações observadas foram pouco acima ou próximas às encontradas por esses autores.

A quantidade acumulada de macro e micronutrientes na planta inteira foi influenciada positivamente pela aplicação do adubo de liberação lenta (Tabela 2). Com exceção do Cu, que ajustou-se ao modelo linear, para os demais nutrientes, houve ajuste da quantidade acumulada na planta ao modelo matemático de 2º grau. A quantidade máxima de N, P, K, Ca, Mg, S, Fe, Zn Mn e B na planta foi obtida com as doses de 11,5; 8,5; 11,1; 10,0; 8,3; 10,1; 7,1; 9,2; 14,0 e 8,4 kg m⁻³, respectivamente.

Tabela 1. Concentração de nutrientes em folhas de pinha, em função de doses de adubos de liberação lenta.

ALL^1	N	P	K	Ca	Mg	S	Cu	Fe	Zn	Mn	В
kg/m ³	g/kg					mg/kg					
0	22,6	2,0	17,9	22,9	7,2	1,7	37	100	73	37	188
3	23,8	1,3	16,4	20,4	5,8	0,9	22	84	39	34	117
6	25,2	1,3	17,2	19,7	6,6	1,1	28	76	41	36	97
9	24,8	1,2	19,1	19,1	6,5	1,0	28	75	36	43	90
12	27,8	1,4	20,0	18,9	4,6	1,2	30	71	40	49	76
	Teste F ²										
ALL	5,27*	4,18*	3,58*	11,15**	3,16 ^{ns}	5,50**	112,7**	11,32**	12,73**	6,25**	35,00**
Blocos	0,96 ^{ns}	2,64 ^{ns}	3,84*	2,75 ^{ns}	0,95 ^{ns}	2,53 ^{ns}	2,84 ^{ns}	1,36 ^{ns}	1,69 ^{ns}	3,49 ^{ns}	1,81 ^{ns}
CV (%)	6,9	21,0	8,4	4,9	18,4	23,1	11,6	8,3	18,8	11,7	13,2

⁶⁶ ALL: adubo de liberação lenta 14-14-14;

Equações de regressão para o efeito das doses de ALL na concentração de nutrientes nas folhas de pinha: N = 0,3817A

70
$$0.0399A^2 - 0.7911A + 22.7829$$
, $R^2 = 0.977*$; $Mg = 6.1$; $S = 0.0131A^2 - 0.1888A + 1.5757$, $R^2 = 0.745**$; $Cu = 0.0131A^2 - 0.01888$

71
$$0,2222A^2 - 2,9333A + 34,6500$$
, $R^2 = 0,554**$; $Fe = 0,2500A^2 - 5,1866A + 98,7000$, $R^2 = 0,973*$; $Zn = 0,5476A^2 - 1,0000$

72
$$8,8381A + 69,1071$$
, $R^2 = 0,861**$; $Mn = 1,0500A + 33,4500$, $R^2 = 0,731**$; $B = 1,0060A^2 - 20,5131A + 182,5571$, $R^2 = 0.0000A^2 - 10000A^2 -$

73 0,958**.

74

77

78

Tabela 2. Acúmulo de nutrientes em mudas de pinha (folhas + caule + raízes), em função de doses
de adubos de liberação lenta.

ALL^1	N	P	K	Ca	Mg	S	Cu	Fe	Zn	Mn	В	
kg/m ³	mg/planta						μg/planta					
0	8,6	1,2	11,3	6,5	3,0	0,8	35	51	41	14	49	
3	32,0	2,9	33,2	21,3	8,1	2,1	50	235	88	49	112	
6	43,7	3,3	42,6	27,8	12,3	2,9	59	413	106	75	125	
9	48,7	3,5	48,4	29,8	12,4	2,9	60	270	102	83	135	
12	54,8	3,3	52,1	31,6	10,5	3,1	61	235	109	101	124	
						Teste F	2					
ALL	106,9**	21,0**	99,1**	89,8**	16,6**	39,1**	4,9*	10,1**	13,9**	112,7**	15,9**	
Blocos	2,0 ^{ns}	1,6 ^{ns}	3,4 ^{ns}	2,2 ^{ns}	1,8 ^{ns}	5,8*	1,5 ^{ns}	0,4 ^{ns}	$0,7^{ns}$	4,1 ^{ns}	1,4 ^{ns}	
CV (%)	9,4	14,2	8,7	9,2	20,8	12,8	18,5	33,7	16,9	9,9	15,9	

¹ALL: adubo de liberação lenta 14-14-14;

79 Equações de regressão para o efeito das doses de ALL no acúmulo de nutrientes em mudas de pinha (folhas + caule +

^{67 2 **; *} e ns: significativo a 1 e 5% de probabilidade e não significativo, respectivamente.

² **; * e ^{ns}: significativo a 1 e 5% de probabilidade e não significativo, respectivamente.

^{82 2,3674}A + 2,7864, $R^2 = 0.992**$; $S = -0.0220A^2 + 0.4435A + 0.8786$, $R^2 = 0.975**$; Cu = 2.0250A + 40.9000, $R^2 = 0.992**$

83 0.782**; Fe = -6.0120A² +85.6548A + 52.0429, R² = 0.863**; Zn = -0.7937A² + 14.5238A + 44.7643, R² = 0.949**;

84 $Mn = -0.4286A^2 + 12.0762A + 15.1357$, $R^2 = 0.988**$; $B = -1.1984A^2 + 20.1143A + 52.6286$, $R^2 = 0.969**$.

85

86 CONCLUSÃO

O uso de adubo de liberação lenta, fórmula NPK 14-14-14, em substrato comercial composto por casca de pínus e cinzas, influencia na concentração e acúmulo de nutrientes em mudas de pinheira.

90

91 REFERÊNCIAS

- 92 HAWERROTH, F. J.; SERRANO, L. A. L.; MARTINS, M. V. V.; OLIVEIRA, M. M. T. de. Doses
- 93 de adubo de liberação lenta na produção de mudas de pinheira em tubetes. Fortaleza: Embrapa
- 94 Agroindústria Tropical, 2013, 21 p. (Boletim de Pesquisa e Desenvolvimento, 79).
- 95 JARREL, W. M.; BEVERLY, R. B. The dilution effect in plant nutrition studies. Advances in
- 96 Agronomy, Madison, v. 34, p. 197-224, 1981.
- 97 LEMOS, E. E. P.; SALVADOR, T. L.; SANTOS, M. Q.; REZENDE, L. P.; SALVADOR, T. L.;
- 98 LIMA, H. M. A. Produção de porta-enxertos em tubetes e enxertia precoce da pinheira (Annona
- 99 squamosa L.). Revista Brasileira de Fruticultura, v. 32, n. 3, p. 865-873, 2010.
- 100 MENDONÇA, V.; ARRUDA, N. A. A.; SOUZA, H. A.; TEIXEIRA, G. A.; HAFLE, O. M.;
- 101 RAMOS, J. D. Diferentes ambientes e Osmocote® na produção de mudas de tamarindeiro
- 102 (*Tamarindus indica*). Ciência e Agrotecnologia, v. 32, n. 2, p. 391-397, 2008.
- MIYAZAWA, M.; PAVAN, M. A.; MURAOKA, T.; CARMO, C. A. F. S. do.; MELO, W. J.
- Análise química de tecido vegetal. In: SILVA, F. C. de. (Ed). Manual de análises químicas de solos,
- plantas e fertilizantes. Brasília, DF: Embrapa Informação Tecnológica, 2009. p.191-234.
- SILVA, H.; SILVA, A.Q. da. Nutrição mineral e adubação de anonas. In: HAAG, H.P. Nutrição
- mineral e adubação de fruteiras tropicais. Campinas: Fundação Cargill, p. 285-342, 1986.