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A B S T R A C T

Recent studies have shown harmful effects of soil compaction in no-tillage system (NTS), but there are
indications that soil structure improves with time of NTS adoption. We formulated the hypothesis that
topsoils of NTS initially have worse soil physical conditions than those under conventional systems, but
these conditions gradually improve with time also down to deeper depth, even when the soil is wheeled
by farm machinery. Our objective was to evaluate the effect of a long-term no-tillage system and machine
traffic on soil mechanical and hydraulic properties. The treatments and soil conditions consisted of five
periods since the last conventional tillage (or age of NTS) in a Hapludox: 0.2, 1.5, 3.5, 5 and 14 years, with
and without traffic; named recent tillage, and initial, intermediate, transition and stabilized NTS phases.
Soil samples were collected from soil layers 0–7, 7–14 and 14–21 cm depth to determine soil porosity,
precompression stress, compressibility coefficient, saturated hydraulic conductivity, air permeability,
water retention curve, bulk density and organic carbon. Conventional tillage of soil previously under no-
tillage significantly affected soil capacity properties, resulting in high macroporosity and deformation
susceptibility, low bulk density and precompression stress. Intensity properties were affected initially by
an increased soil pore obstruction, negatively affecting air permeability and saturated hydraulic
conductivity, from 0 to 21 cm soil depth. However, after five years of no-tillage there was an increase in
microporosity and, although small, in soil organic carbon, especially in the 0–7 cm soil layer; thus, soil
water retention and soil intensity properties (like soil water and air permeability) were also improved,
regardless of farm machinery traffic. Over time, soil reconsolidation occurred, which resulted in
reduction of the compressibility coefficient and degree of compactness, mainly in the upper layers (0–
7 and 7–14 cm). However, in the deepest layer with the least disturbance, the degree-of-compactness and
bulk density increased. The evolution of physical properties and processes (from recent tillage to
stabilized NTS phase) for no-tilled soil is proposed for controlled and uncontrolled traffic systems as a
framework based on field data for capacity and intensity soil properties. The process of creating
aggregates is represented, at first, by an increased number of contact points before they are re-loosened
and strengthened at the same time by a rearrangement of particles, reducing aggregate bulk density but
increasing soil strength at the same time. The framework is divided into 4 phases: initial (1.5 years),
intermediary (3.5 years), transitional (5 years), and stabilized (14 years) conditions.
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1. Introduction

Maintaining a proper balance between order and dissipation
processes is fundamental for agricultural systems sustainability.
Agricultural systems are thermodynamically open systems that
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tend toward steady-state, characterized by minimum production
of entropy (Addiscott, 1995). Ordering processes and entropy
decrease occur with plant photosynthesis and growth, organic
matter formation, particle aggregation and development of soil
structure, and water flow contributing to soil profile development
(Addiscott, 1995).

The understanding of soil physical property dynamics is
improved when using the concept of intensity and capacity soil
properties, as proposed by Horn and Kutilek (2009). A capacity
property (e.g., bulk density) is related to the composition of a
defined soil volume, disregarding its internal organization, i.e., it
ignores the structure and distribution of mineral and organic
particles in the soil space. By contrast, an intensity property (e.g.,
air conductivity) considers the dynamic properties/processes that
exhibit variations in time and space. Therefore, the latter is a tool to
diagnose and quantify changes imposed by environmental and
anthropic factors on soil internal structure and its functional
properties or processes. Further, as stated by De Jong van Lier and
Gubiani (2015), determining limiting conditions in a simplified
manner goes against systemic understanding, since the actual
functioning of the system is relegated to lower priority.

Many soils around the world under long-term conventional
tillage (plowing and disking) are undergoing tillage shifting toward
less soil perturbations. No-tillage system (NTS), for instance, is a
farming system that considerably reduces soil erosion, sediment
yield and, in much less extent, water loss in the landscape and at
watershed scales (Engel et al., 2009; Bonumá et al., 2013, 2014;
Didoné et al., 2014). This tillage system also promotes soil
aggregate stabilization by the increased soil organic matter and
decreased soil disturbance (Bernoux et al., 2006; Kihara et al.,
2012). NTS has become the most widespread soil management
system in Brazil, and it is expanding to crops that are still
employing the conventional soil tillage (Cavalieri et al., 2009) and
even substituting for slash-and-burn agriculture (Reichert et al.,
2014, 2015a,b).

Soils under NTS frequently have higher state-of-compactness in
farmland conditions (Reichert et al., 2009; Suzuki et al., 2013) and
in forests and grazed pasture (Suzuki et al., 2015). Soil deformation,
as the sum of soil shearing and compaction, may increase the
demand of agricultural machinery traction (Horn et al., 1995; Botta
et al., 2011), soil resistance to root penetration (da Veiga et al.,
2007; Fasinmirin and Reichert, 2011), and water deficit during dry
spells (Grzesiak et al., 2012; Awe et al., 2014). NTS may reduce soil
volume explored by the rooting system (Reichert et al., 2009;
Grzesiak et al., 2012), and soil macroporosity (Horn and Smucker,
2005), saturated hydraulic conductivity, and water storage
(Bhattacharyya et al., 2006; Cavalieri et al., 2009).

These conditions, however, are generally observed in field
experiments where the time after NTS adoption is not explicitly a
study-variable (Fabrizzi et al., 2005; Li et al., 2011). Long-term
studies (greater than 10 years), on the other hand, have shown
different results than for short-term (a few years) research
(Zibilske et al., 2002; Hazarika et al., 2009). They emphasized
that long-term use of NTS could result in reduced soil bulk density,
and improved aggregation, increased organic carbon content, and
Table 1
Time since last tillage or time since the adoption of no-tillage syste

Abbreviation Time since last tillage or t

NTS0.2 2 months since last tillage
NTS1.5 1.5 years since last tillage
NTS3.5 3.5 years since last tillage 

NTS5 5 years since last tillage 

NTS14 14 years since last tillage 

Obs: the sampling for this study was done in December 2006.
greater continuity and stability of soil pores. Horn (2004) proved
that long term reduced tillage resulted in even deeper changes in
soil strength. Soil precompression stress increased while, at the
same time, the saturated hydraulic conductivity also increased
down to even 60 cm depth after approximately 6 years of
continuous tillage management.

We formulated the hypothesis that, in the first years of NTS
adoption, capacity and intensity properties indicate worse soil
quality than in conventional tillage, but soil conditions gradually
improve over time with NTS even in trafficked field conditions. Our
objective was to evaluate the effect of long-term no-tillage system
and controlled farm machine traffic on soil capacity and intensity
properties of a subtropical Hapludox.

2. Materials and methods

2.1. Description of the study site, experimental design, and treatments

The study was conducted at the experimental station of
Brazilian Agricultural Research Corporation (EMBRAPA), Wheat
Research Center, located in Passo Fundo, southern Brazil
(28�1000000S, 52�2200000W), at 680 m above the mean sea level.
The soil is classified as Hapludox (Soil Survey Staff, 2014). The
climate is humid subtropical (Cfa), according to the Köppen
classification, with mean annual temperature of 17.5 �C, and
average annual rainfall of 1785 mm evenly distributed throughout
the year.

The experiment was laid out in randomized blocks using a two-
factor experimental design, 5 � 2, i.e., five different times after
tillage (ploughing and harrowing) of soil previously under no-
tillage and two machine traffic levels, totaling 10 treatments or soil
conditions (as they will be called onwards), with four replications
each. A field under NTS since 1992 was used to establish our
experiment in May 2001. The nine years of no-till prior to the
initiation of this experiment were used for the 14 years (from
1992 to 2006) of continuous no-tillage treatment. Other five
treatments were established by tilling the NTS area at different
times, and then again managed under NTS, before soil sampling
and observations were made in 2006, constituting the 0.2, 1.5,
3.5 and 5 years NTS treatments. After ploughing and harrowing
operations, controlled machine traffic at two levels (with and
without traffic) was established for all field operations. These
procedures were repeated for adjacent portions of the field at five
different times before soil sampling as mentioned above (Table 1).
In all soil conditions, seeding was done with a seeder equipped
with lagged-type disc furrow openers. The tractor used was a MF
292 4 � 2 (total weight of 4.930 kg) and seeder SHM 11/13 (total
weight of 2.165 kg). The cropping rotation used in the experimental
area is described in Table 2.

2.2. Soil sampling and laboratory analyses

Soil sampling was done in December 2006. A 30-cm deep
trench was excavated between crop rows in each plot to extract
disturbed soil samples, from the soil layers 0–7, 7–14 and 14–
m (NTS) and mont/year when was made the last soil tillage.

ime of NTS Month/year of last tillage

 October/2006
 June/2006

June/2003
December/2001
December/1992



Table 2
Crop rotation used in the experiment.

Cropping season Crop

Winter Summer

2001/2002 Wheat Soybean
2002/2003 Vetch Maize
2003/2004 White oats Soybean
2004/2005 Wheat Soybean
2005/2006 Turnip Maize
2006/2007 White oats Soybean
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21 cm, to determine soil particle-size distribution and soil organic
carbon. In the same soil layers, undisturbed soil samples were
extracted with metallic rings (5.7-cm diameter and 4-cm height) to
determine the saturated hydraulic conductivity (Ks), air perme-
ability (Ka), total porosity (Pt), macroporosity (Ma), microporosity
(Mi), bulk density (BD), compressibility, and soil water retention
curve, in three replicates per layer and per treatment for each
evaluation.

2.2.1. Capacity properties analyses
From disturbed soil samples, particle-size distribution, namely

sand (2.0–0.05 mm), silt (0.05–0.002 mm) and clay (<0.002 mm)
contents, was determined with the pipette method (Gee and
Bauder, 1986), whereas soil organic carbon (SOC) content was
quantified by the Walkley and Black (1934) method.

Soil Pt, Ma and Mi and water retention were determined in
undisturbed soil samples, saturated by capillary rise for 48 h and
subsequently drained to matric potentials of �1, �6 and �10 kPa, in
Table 3
Total porosity, macroporosity, microporosity, bulk density, soil organic carbon and satura
with and without machine traffic.

Soil layer
(cm)

Management system 

NTS0 NTS1.5 NTS3.5 NTS5

Total porosity (cm3 cm�3)
0–7 0.69 aa 0.52 b 0.53 b 0.55 

7–14 0.60 a 0.51 b 0.47 c 0.49 

14–21 0.50 a 0.50 a 0.49 ab 0.49 

Macroporosity (cm3 cm�3)
0–7 0.36 a 0.16 b 0.19 b 0.18 

7–14 0.27 a 0.16 b 0.11 c 0.12 

14–21 0.15 a 0.14 a 0.12 ab 0.13 

Microporosity (cm3 cm�3)
0–7 0.33 c 0.36 bc 0.34 bc 0.37 

7–14 0.33 b 0.35 ab 0.36 a 0.36 

14–21 0.36 c 0.36 bc 0.38 b 0.37 

Bulk density (g cm�3)
0–7 1.17ns 1.32 1.23 1.24 

7–14 1.27 b 1.34 ab 1.41 a 1.41 

14–21 1.45ns 1.35 1.39 1.38 

Soil organic carbon (%)
0–7 2.0 b 1.7 c 1.7 c 2.2 a
7–14 1.6 bc 1.8 a 1.8 ab 1.6 c
14–21 1.6ns 1.5 1.7 1.5 

Saturated hydraulic conductivity (cm h�1)
0–7 47.0 a 7.8 b 13.8 b 13.5 

7–14 32.9 a 16.2 ab 8.0 b 5.0 b
14–21 10.6 a 5.0 b 2.6 bc 4.8 b

NTS0—soil disturbance in the no-tillage system at 2 months, 0 years prior to soil samplin
NTS3.5—soil disturbance in the no-tillage system 3.5 years prior to soil sampling, NTS5—s
soil disturbance in the no-tillage system for 14 years prior to sampling. CV—coefficient

a Means followed by the same letter in the same line do not differ by Tukey test (p <
a sand column (Reinert and Reichert, 2006) and �33 and �100 kPa
in pressure chamber (Klute, 1986). Thereafter, the samples were
dried to constant weight in an oven at 105 �C for 48 h to determine
soil BD. Gravimetric soil moisture at matric potentials �500,
�1000 and �1500 kPa was determined in previously air-dried and
sieved (2 mm sieve) soil samples, with a psychrometer (Klein et al.,
2006; Gubiani et al., 2012). Volumetric soil moisture for each
matric potential was calculated by multiplying the gravimetric
moisture by the respective bulk density. Air capacity is the volume
of empty pores at a given water potential; macroporosity is the
volume of pores drained at �6 kPa, and microporosity are water-
filled pores at �6 kPa water potential.

The soil water retention curve was obtained by the relationship
between soil moisture and matric potential, with fitting of the Van
Genuchten (1980) model. Field capacity (FC) and permanent
wilting point (PWP) were calculated as water volume retained at
�10 and �1500 kPa matric potential, respectively, from the model.
The difference between soil water content at FC and PWP is defined
as plant available water (Paw), whilst the difference between soil
water content at saturation and field capacity (FC = �10 kPa) is
drainable water (DW).

Soil degree-of-compactness (DC) relates field BD to a reference
BD herein based on least limiting water range (LLWR):

DC ¼ BD
BDLLWR

100

where DC: degree-of-compactness (%); BD: field bulk density
(Mg m�3); BDLLWR: reference BD based on least limiting water
range (LLWR), calculated as recommended by Reichert et al. (2009)
ted hydraulic conductivity in the three soil layers under different soil management,

Traffic CV (%)

NTS14 Without With

b 0.54 b 0.57ns 0.56 8.3
b 0.48 bc 0.53 a 0.49 b 4.5
ab 0.49 b 0.50ns 0.50 5.6

b 0.12 b 0.21ns 0.19 26.5
bc 0.11 c 0.18 a 0.13 b 17.3
ab 0.09 b 0.12ns 0.13 21.4

b 0.42 a 0.35ns 0.36 0.1
a 0.37 a 0.36ns 0.35 3.5
bc 0.40 a 0.38 a 0.37 b 3.0

1.27 1.20 b 1.29 a 6.8
a 1.36 ab 1.34ns 1.38 5.6

1.39 1.40ns 1.38 4.8

 2.1 ab 2.0 a 1.9 b 3.6
 1.6 bc 1.8 a 1.6 b 4.6

1.5 1.6ns 1.5 5.2

b 7.2 b 19.3ns 16.4 5.5
 15.4 ab 18.7ns 11.4 9.0
c 1.1 c 3.9 b 5.7 a 4.4

g; NTS1.5—soil disturbance in the no-tillage system 1.5 years prior to soil sampling;
oil disturbance in the no-tillage system 5 years prior to soil sampling and NTS14—no

 of variation. ns—not significant.
 0.05).



Table 4
Significant interactions between duration of soil tillage prior to sampling and
machine traffic in relation to soil organic carbon (SOC), total porosity (Pt),
macroporosity (Ma), microporosity (Mi), bulk density (BD) and saturated hydraulic
conductivity (Ks) in the three soil layers.

Property Traffic NTS0.2 NTS1.5 NTS3.5 NTS5 NTS14

0–7 cm soil layer
SOC (%) Without 1.9 a BC* 1.9 a C 1.9 a C 2.3 a A 2.1 a AB

With 2.0 a A 1.6 b B 1.6 b B 2.1 b A 2.1 a A

7–14 cm soil layer
SOC (%) Without 1.7 a BC 2.0 a A 1.9 a AB 1.6 a BC 1.6 a C

With 1.6 a A 1.7 b A 1.7 b A 1.5 a A 1.7 a A

Pt (cm3 cm�3) Without 0.66 a A 0.56 a B 0.47 a C 0.51 a BC 0.47 a C
With 0.54 b A 0.47 b B 0.47 a B 0.46 b B 0.48 a B

Ma
(cm3 cm�3)

Without 0.32 a A 0.21 a B 0.12 a C 0.13 a C 0.10 a C
With 0.22 b 0.12 b B 0.11 a B 0.11 a B 0.11 a B

14–21 cm soil layer
Ma
(cm3 cm�3)

Without 0.13 a A 0.13 b A 0.14 a A 0.10 a A 0.10 a A
With 0.17 a A 0.15 a AB 0.09 b BC 0.16 a AB 0.08 a C

Mi (cm3 cm�3) Without 0.36 a B 0.36 a B 0.37 a B 0.38 a AB 0.40 a A
With 0.35 a C 0.36 a BC 0.38 a AB 0.35 b C 0.39 a A

BD (g cm3) Without 7.1 b A 4.5 a AB 3.7 a AB 3.2 a AB 1.0 a B
With 14.2 a A 5.4 a B 1.5 a B 6.3 a B 1.2 a B

Ks (cm h�1) Without 7.1 b A 4.5 a AB 3.7 a AB 3.2 a AB 1.0 a B
With 14.2 a A 5.4 a B 1.5 a B 6.3 a B 1.2 a B

NTS0.2—soil disturbance in the no-tillage system at 2 months prior to soil sampling;
NTS1.5—soil disturbance in the no-tillage system 1.5 years prior to soil sampling;
NTS3.5—soil disturbance in the no-tillage system 3.5 years prior to soil sampling,
NTS5—soil disturbance in the no-tillage system 5 years prior to soil sampling and
NTS14—no soil disturbance in the no-tillage system for 14 years prior to sampling.
CV—coefficient of variation. ns—not significant.

* Means for a given property followed by the same small letter or capital letter,
respectively in a given column or line, do not differ by Tukey test (p < 0.05).
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where the LLWR = 0: BDLLWR = �0.00078 clay + 1.83803, where clay
is the clay content (g kg�1).

2.2.2. Intensity property analyses
For uniaxial compression test, soil samples were saturated and

then equilibrated at a matric potential of �33 kPa using a pressure
chamber (Klute, 1986). The tests were performed using a
consolidometer with digital display of applied load, and analog
readout of sample deformation. Soil samples were then sequen-
tially loaded with 12.5, 25, 50, 100, 200, 400, 800 and 1600 kPa. All
loads were applied during 5 min, when 99% of soil deformation had
occurred (Reichert et al., 2009). Afterwards, the uniaxial compres-
sion curve was plotted, and values of precompression stress and
coefficient of compressibility, which defines the slope of the virgin
compression line (defined as anthropogenically affected), were
determined by the Casagrande (1936) method.

Soil saturated hydraulic conductivity (Ks) was determined
using a falling-head permeameter (Hartge and Horn, 2009;
Gubiani et al., 2010).

Soil air permeability (Ka) was determined with a constant-head
air permeameter, on soil samples equilibrated to �6, �10, �33,
�100, �300, �500 and �1500 kPa matric potential. The equipment
consisted of flow meters with different flow rates through which
air circulates before flowing through soil. A low air pressure
(0.1 kPa) was applied steadily to avoid turbulent flow. The pressure
gradient between the environment and the air that flows through
the sample was measured by the air flow meter. Ka was calculated
by the equation:

Ka ¼ rg
0:001 Dv

60Dt 100Dpa

where r: air density (kg m�3); g: gravity (9.81 m s�2); Dt: interval
time (s); Dv: air volume (m3) flowing through the soil during Dt;
Dp: applied air pressure (kg m s�2); a: sample cross sectional area
(m2).

Soil Ka and ea were regressed by logarithmic transformation
similar to an exponential model of Ahuja et al. (1984), as previously
proposed by Ball et al. (1988):

log Ka ¼ log M þ N log ea

where M and N: empirical constants. N is also regarded as a pore
continuity index, which reflects an increase in Ka with increase in
ea or reduction in pore tortuosity and surface area with larger
amount of pores available for air flow.

Blocked soil porosity (eb) was estimated by the equation of Ball
et al. (1988):

eb ¼ 10�log M=N

where eb: value of ea below which the air flow through the soil
ceases due to the discontinuity of the aerated pore network.

2.3. Statistical analysis

Capacity and intensity soil properties were tested for normal
distribution using the Shapiro–Wilk test, and those not following a
normal distribution (Ks and Ka) were log-transformed (log + 1)
before the ANOVA. When the F-test was significant, means were
tested using Tukey (p < 0.05).

3. Results

3.1. Capacity properties

Soil organic carbon (SOC) decreased in the soil surface layer in
the first years after tillage, NTS1.5 and NTS3.5, when compared to
the initial content (2%) found in NTS0.2 (Table 3). After five years of
continuous no-tillage system, NTS5 and NTS14, SOC content began
to increase and exceeded the initial content. Down to 14-cm soil
depth, farm machinery traffic had a significant effect on SOC, its
content being greater in soil without traffic. However, in the 14–
21 cm soil layer there was no significant effect of machine traffic on
the SOC content (Table 3). The interaction between time of no-
tillage adoption vs. machine traffic for surface layer of controlled-
traffic soil was significant for SOC (Table 4). In the trafficked soil,
NTS1.5 and NTS3.5 showed a reduction in SOC which differed
significantly from other soil conditions. In the intermediate soil
layer this interaction was also significant for SOC.

Soil total porosity (Pt) and macroporosity (Ma) were highest in
the 0–7 cm soil layer of NTS0.2 (Table 3). In the intermediate layer
(7–14 cm) significantly greater Pt and Ma values were also
observed in NTS0.2 compared to other soil conditions. Despite
high Pt and Ma recorded for NTS0 in 0–7 cm soil depth, lower soil
bulk density (BD) was obtained in this layer compared to NTS3.5
and NTS5. Thus, with increasing time of NTS adoption, soil BD
increased until reaching a maximum at about 3.5–5 years.
However, in NTS14 BD values soil decreased with continuous no-
tillage, thus indicating improved soil physical conditions. In this
surface layer controlled-traffic significantly increased BD (Table 3).

Soil degree-of-compactness (DC) gradually decreased over time
in both surface layers (0–7 and 7–14 cm), reaching values lower
than those found in soil immediately after soil tillage (Fig. 1). In
contrast, in the deepest layer, DC increased significantly. This
behavior within layers is intrinsically related to variations in soil
bulk density that, over time, decreased in surface layers but
increased in deeper depth.



Fig. 1. Degree-of-compactness (DC) and bulk density (BD) for three soil layers and different times after plowing for deploying no-tillage system.
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Soil Ma and Mi changed over time due to soil structural changes,
with an initial increase in Ma and decrease in Mi (Table 3).
However, after 14 years of no-tillage Ma reduced and Mi increased,
providing conditions required for improved soil water retention, as
shown latter in this paper. Soil Pt and Ma were high in intermediate
soil layer, where non-trafficked soil showed greater Pt and Ma
(Table 3). Regardless of machine traffic, NTS0.2 had the greatest
values of Pt and Ma. In the 14–21 cm soil layer, NTS0.2 and NTS1.5
showed greater Ma, contrary to NTS14 that regardless of machine
traffic had greatest Mi and smallest Ma. Soil Ks had only significant
differences in the deepest soil layer, with greater values for soil
without traffic. In trafficked soil, NTS0.2 showed greatest Ks that
differed significantly from other soil conditions. Without machine
traffic NTS0.2 had the greatest Ks, but only differed statistically
from NTS14 with smallest Ks associated to low Ma.

Soil without machine traffic after two months since last tillage
(NTS0) had highest water drainage at high (less negative) matric
potentials. The reverse was obtained in NTS14, which initially
showed low drainage and this soil retained more water compared
to other soil conditions (Fig. 2). Saturated water content ranged
from 0.51 cm3 cm�3 in NTS14 and NTS1.5 to 0.58 cm3 cm�3 in NTS5.

For trafficked soils, however, NTS0 and NTS14 exhibited the
greatest saturated water content in the surface layer, and in NTS0 a
high air capacity (at �6 kPa), indicating lower water retention. The
same trend arose in 7–14 cm soil layer, as NTS0 showed greatest
saturation water content, followed by NTS14. Similarly, in NTS0.2
there existed a rapid water drainage at �0.1-kPa matric potential.
For NTS1.5, NTS3.5 and NTS5, high water retention was observed
when applying more negative matric potential. In this layer, NTS14
soil revealed the greatest water retention when subjected to matric
potentials smaller or equal to �6 kPa.

All soil conditions showed approximately the same saturated
soil water content in the 14–21 cm soil layer, although NTS0.2 soil
had larger water drainage with increased matric potential. This
result implies less water retention, contrary to NTS14 that had
greater water retention than other soil conditions even at lower
(more negative) matric potential. However, over time plant
available water increased particularly in the surface layer (0–
7 cm) (Fig. 3). In subsoil layers (7–14 and 14–21 cm) the amount of
available water was equal to or slightly higher than it was at the
start of the experiment.

3.2. Intensity properties

Soil precompression stress (sp) was similar in all layers, with
higher average values for 1.5 years after soil tillage (Fig. 4).
Fourteen years after tillage, however, sp decreased and reached
levels similar to sites under recent tillage management. Soil
compressibility coefficient (Cc) gradually declined over time,
reaching values slightly below those after tillage in both upper
layers (0–7 and 7–14 cm), and above those in the deeper soil layer
(14–21 cm).

Soil saturated hydraulic conductivity (Ks) was greatest in the 0–
7 cm soil layer of NTS0.2 (Table 3). In the intermediate layer (7–
14 cm), NTS0.2, NTS1.5 and NTS14 had significantly higher Ks values
in comparison with other soil conditions. The effect of soil tillage
was also observed in the 14–21 cm soil layer where NTS0.2 had
greatest Ks; NTS1.5, NTS3.5 and NTS5 showed intermediate values.
NTS14 had smallest Ks and porosity values which statistically
differed from other soil conditions.

Soil air permeability (Ka) for soil without machine traffic was
greatest in NTS0 0–7 and 7–14 cm soil depths for all matric
potentials, which is in agreement with the observed high Pt and Ma
and possibly greater pore continuity. Similarly, in trafficked soil
and for above mentioned soil layers, NTS0 and NTS14 provided
greatest Ka values (Fig. 5), whereas smallest Ka was in NTS1.5 and
NTS3.5 for all soil layers, regardless of machine traffic. The increased
Ka with decreased matric potential under all soil conditions and
soil layers may be linked to drainage processes and consequent
increasing air-filled porosity.

4. Discussion

4.1. Capacity properties

Soil organic matter content is linked to soil structural quality
(Horn and Peth, 2009). Any agricultural practice that increases soil
organic carbon content will contribute to stabilizing pore structure
and increase the soil's capacity to withstand loads from machine
traffic without collapsing (Horn et al., 2003; Bhattacharyya et al.,
2006).

Reduction in soil carbon content in recently-tilled soil is due to
increased organic matter mineralization rate. Tillage promotes soil
aggregate breakdown, allowing for oxygen inflow and thereby
stimulating microbial decomposition and loss of carbon as CO2

(Campbell et al., 2001). Organic matter mineralization from surface
layers might be responsible for soil organic carbon decrease
observed with time in NTS1.5 and NTS3.5 soil when compared to the
initial content (2.0%). This is also related to the action of
implements (mainly disking) used in soil tillage, which causes
the grinding of plant residues and increases its surface area during
the incorporation process into the soil. In total these processes



Fig. 2. Soil water retention curves for three soil layers and different times after plowing for deploying no-tillage system, with (left column) and without (right column) the
effects of farm machinery traffic.
NTS0.2—soil disturbance in the no-tillage system at 2 months prior to soil sampling; NTS1.5—soil disturbance in the no-tillage system 1.5 years prior to soil sampling; NTS3.5—
soil disturbance in the no-tillage system 3.5 years prior to soil sampling, NTS5—soil disturbance in the no-tillage system 5 years prior to soil sampling and NTS14—no soil
disturbance in the no-tillage system for 14 years prior to sampling.
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Fig. 3. Plant available water for three soil layers and different times after plowing for deploying no-tillage system.
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favor the plant residue decomposition (Kihara et al., 2012),
compared to mulch on soil surface (Lal, 2009).

With increased time of no-tillage history, soil organic carbon
content increase evidences the beneficial effects of no-tillage. Lal
(2009) and Šimon et al. (2009) pointed out some advantageous
effects of no-tillage such as maintenance of plant residues on soil
surface and reduction in CO2 emission, thus increasing soil carbon
stock. The SOC reduction in the soil surface layer may be followed
by an increase in carbon in deeper soil layers, depending on soil
disturbance and residue incorporation into soil (Lal, 2009).

Trafficked soil revealed lower organic carbon content in surface
layers possibly due to high compaction that hinders plant growth
and root development (Chen and Weil, 2011), which results in a
smaller input of organic materials. Thus, soil wheeling indirectly
affected organic matter contents by providing unfavorable soil
physical conditions for crop growth and biomass addition to soil
(Hamza and Anderson, 2005). Stressed stunted plant growth and
development observed is a direct result of poor root growth and
reduced water availability in compacted soil, resulting in low input
of organic material to soil surface and hence reduction of soil
organic carbon with time (Hamza and Anderson, 2005). In the sub-
surface layer (14–21 cm) of our study there was no significant
effect of machine traffic on organic carbon, probably because the
applied mechanical stresses did not reach deeper soil layers and
compaction did not limit root growth and biological activity.
Soil degree-of-compactness decrease over time in surface
layers is a possible evidence that NTS may provide favorable
conditions for plant growth even without tillage and contributes to
soil aggregation and improves soil structure (Horn et al., 1995; da
Veiga et al., 2007), thus resisting to compaction loads applied on
soil (Cavalieri et al., 2009). It is noteworthy that at greater depths,
as in the 14–21 cm layer, added effects of roots and other living
organisms is not pronounced, being restricted mainly to surface
layers (da Veiga et al., 2007). However, even a minor increase in
root surfaces enhances the apparent soil cohesion and, if we
furthermore include the intensely increased soil strength based on
the very pronounced tensile root strength, we may relate the
stronger soil conditions to the overall improved structure
formation and soil strengthening by hydraulic and biological
processes (Wu and Watson, 1988; Paterson et al., 2007; Czarnes
et al.,1999; Trükmann, 2010). Therefore, even if only very few small
or fine roots can be detected they may help to improve the soil
strength to a great extent. Amelioration of deeper and more
compacted soil layers, as detected in our soils especially under
controlled traffic conditions with a trend of increasing bulk density
and degree-of-compactness, requires additional hydraulic and
biological processes. A mere breakdown promoted by deep tillage
would enhance load transmission to deeper soil layers.

Greatest values of soil total porosity and macro-porosity and
smallest soil bulk density in surface layer of NTS0 are due to recent



Fig. 4. Precompression stress (sp) and compressibility coefficient (Cc) for three soil layers and different times after plowing for deploying no-tillage system.
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soil tillage that disturbed soil structure (da Veiga et al., 2007). With
increasing time of no-tillage, there was a tendency of increasing
soil bulk density until reaching a quasi-stable value after 3.5–
5 years of NTS adoption. These effects on soil density and porosity
may result from natural rearrangement of soil particles and
aggregates, and from loads exerted during traffic by agricultural
machines and implements, especially under inadequate soil
moisture conditions (Botta et al., 2011). Furthermore, cropping
systems with crop rotations contribute to the rearrangement of soil
particles into more stable aggregates (Wohlenberg et al., 2004).
Soil biota and especially plant roots play a major role in structure
(pore formation, particle aggregation, and exudates release)
(Kihara et al., 2012). In our experiment, the effects resulted from
4.9-Mg tractor wheeling and greater effect on soil density and
macroporosity would be expected if heavier load machines are
used for field operations.

Decrease in soil bulk density after 14 years of continuous NTS
may indicate an intense rearrangement of soil particles during
long-term repeated swelling/shrinking and biological processes,
which allow reaching the final stage of smallest free entropy, as
proposed by Addiscott (1995). As a consequence of an increased
number of particle to particle contacts with maximum of particle
area in parallel, even the improved soil physical quality condition
can withstand external forces at a lower bulk density. Furthermore,
an enhanced biological activity results in the formation of more
vertically oriented, major stress equilibrated stronger pores,
additionally fixed by exudates, which reduce soil deformation
risks but provide a better plant-root growth system (Hartge and
Horn, 2009; Chen and Weil, 2011). Lal (2009) and Šimon et al.
(2009) state that soil bulk density under NTS may decrease over
time mainly due to increase in organic matter content in the
surface layer, which enhances aggregation and stabilization of soil
structure.

Greatest macroporosity compared to other tillage systems in
NTS0.2, regardless of machine traffic, demonstrates the effective-
ness of soil tillage to increase the total porosity and macroporosity.
This is, however, a transient condition. With time, the volume
decreases with soil particle re-arrangement and pressure applied
by growing plant roots (Grzesiak et al., 2012) or by machine traffic
(Chen and Weil, 2011).

High water retention at saturation (0 kPa matric potential) in
surface layers (from 0 to 14 cm) in NTS0.2 soil without machine
traffic contrasted to a rapid water drainage with decreasing matric
potential. This is a classic response to soil disturbance which
degrades soil structure, thus resulting in increased soil total
porosity and macroporosity (pores drained at 6 kPa) at the expense
of microporosity (pores not drained at 6 kPa) (da Veiga et al., 2007),
and hence increased water retention near saturated conditions.
This behavior favors drainage and rapid reduction in water
retained by soil at less negative matric potentials (Fabrizzi et al.,
2005). By contrast, NTS14 (longest time without soil tillage) is
characterized by slow drainage and less water retention initially at
higher matric potentials (0 to �10 kPa), but more water retention
at more negative matric potentials (less than �10 kPa), which
shows the importance of maintaining soil structure and pore
structure conditions (da Veiga et al., 2007) in addition to increased
soil organic carbon content (Campbell et al., 2001; Hazarika et al.,
2009) as observed in our study. Thus, in practical terms there is less
water loss with the onset of soil drying and better water retention
at higher (less negative) potentials, resulting in higher water
availability (water retained between �10 and �1500 kPa) to plants.

The fact that the water retention curve in the 14–21 cm soil
layer was similar for all soil conditions with also approximately the
same saturated soil water content indicates tillage or no-tillage did
not significantly affect this layer, thus showing for machine traffic
of traditionally-used tractors (medium loading) in southern Brazil
soil compression is confined to surface layers. These means
plowing turned around the soil volume, but the loosening and
volume expansion is of short duration.

Plant available water increases over time, particularly in surface
layer (0–7 cm), due to soil structure improvement mentioned
above. Bhattacharyya et al. (2006) and Fabrizzi et al. (2005) also
observed more water with consolidation of no-tillage system.
Fabrizzi et al. (2005) added that increased water holding capacity
was significantly important during droughts, ensuring water
supply to corn, resulting in higher yield than in conventionally-
tilled soil. In subsurface layers (7–14 and 14–21 cm) the effect was
less pronounced, probably due to higher root and nutrient
concentration in surface layers. Thus, absence of soil disturbance
in no-tillage soil, in controlled traffic conditions, does not
adversely affect water storage and availability, and even after
14 years of NTS adoption tillage is not a necessary practice,
provided roots and soil organisms contribute to an equilibrated
pore-size distribution for water and air retention and flow in the
soil.
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Fig. 5. Soil air permeability as a function of matric potential for three soil layers and different times after plowing for deploying no-tillage system, with and without the effects
of farm machinery traffic.
NTS0.2—soil disturbance in the no-tillage system at 2 months prior to soil sampling; NTS1.5—soil disturbance in the no-tillage system 1.5 years prior to soil sampling; NTS3.5—
soil disturbance in the no-tillage system 3.5 years prior to soil sampling, NTS5—soil disturbance in the no-tillage system 5 years prior to soil sampling and NTS14—no soil
disturbance in the no-tillage system for 14 years prior to sampling.
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4.2. Intensity properties

Changes in physical properties caused by soil tillage and
trafficking are time-dependent, and such changes differ depending
on the parameter type. Horn (2004) proved that soil mechanical
strength parameters, like the precompression stress, increased the
more the smaller the tillage intensity was and the less pronounced
the wheeling intensities were. He explained these effects with the
necessary rearrangement of particles, which must reach the final
stage of smallest entropy, which indeed takes time.

The increase in soil precompression stress immediately after
soil tillage is related to soil disruption of the massive, less porous
structure (da Veiga et al., 2007), as evidenced by the high bulk
density immediately after tillage. After 14 years since last tillage,
soil bulk density decreased and porosity increased, with a
consequent reduction in precompression stress, which might have
possibly occurred but this would underline that a new equilibrium
was still not reached.

Although reducing precompression stress means greater
susceptibility to compression due to lower soil load bearing
capacity (Vogelmann et al., 2012b), this reduction may however
translate into better soil environment for root growth (Horn et al.,
1995; Rosa et al., 2008) and soil aeration (Mordhorst et al., 2012).
Concerning the final stage of lowest free entropy, we define such
stage as near steady-state as the “loosening” and improvement of
soil ecological properties and functions can still be optimized both
with respect to soil strength and soil functions. This stage
expresses emerging properties (Nicolis and Prigogine, 1977) of
the soil system.

When the applied load is greater than soil precompression
stress (load bearing capacity), degradation can occur by changing
pore structure with reduction in pore size and distorting pore



Table 5
Regression parameters (M and N) and obstructed porosity (eb) of an Oxisol in the
three soil layers under different soil management, with and without machine traffic.

Soil management log M N eb (vol.%) R2

0–7 cm soil layer—without traffic
NTS0 7.17 12.18 25.79 0.92
NTS1.5 �1.78 �5.62 48.29 0.89
NTS3.5 3.57 3.26 8.04 0.85
NTS5 4.92 5.32 11.92 0.87
NTS14 2.98 2.02 3.35 0.81

7–14 cm soil layer—without traffic
NTS0 3.88 2.52 2.89 0.70
NTS1.5 5.44 6.16 13.11 0.87
NTS3.5 5.15 4.73 8.12 0.86
NTS5 6.65 6.75 10.32 0.86
NTS14 5.21 3.85 4.44 0.87

14–21 cm soil layer—without traffic
NTS0 5.56 0.91 0.91 0.91
NTS1.5 6.14 5.95 9.32 0.96
NTS3.5 5.61 5.96 11.43 0.86
NTS5 5.97 5.29 7.43 0.85
NTS14 6.74 6.58 9.45 0.93

0–7 cm soil layer—with traffic
NTS0 6.70 5.73 31.88 0.90
NTS1.5 3.78 4.12 18.10 0.85
NTS3.5 4.24 8.54 5.09 0.78
NTS5 5.30 2.55 16.30 0.82
NTS14 4.45 5.19 8.27 0.85

7–14 cm soil layer—with traffic
NTS0 5.23 5.11 4.45 0.82
NTS1.5 7.81 4.63 11.13 0.84
NTS3.5 3.43 3.28 5.29 0.91
NTS5 8.72 8.49 7.52 0.83
NTS14 9.50 2.52 6.85 0.81

14–21 cm soil layer—with traffic
NTS0 3.56 3.24 5.17 0.81
NTS1.5 8.14 4.53 7.47 0.91
NTS3.5 3.61 7.83 12.26 0.90
NTS5 3.97 4.35 4.75 0.95
NTS14 4.74 4.38 8.83 0.90

NTS0.2—soil disturbance in the no-tillage system at 2 months prior to soil sampling;
NTS1.5—soil disturbance in the no-tillage system 1.5 years prior to soil sampling;
NTS3.5—soil disturbance in the no-tillage system 3.5 years prior to soil sampling,
NTS5—soil disturbance in the no-tillage system 5 years prior to soil sampling and
NTS14—no soil disturbance in the no-tillage system for 14 years prior to sampling.
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geometry while often bulk density increases as well as the
resistance to root penetration (Grzesiak et al., 2012). Moreover,
such physical changes resulting from load application exceeding
soil bearing capacity may affect soil water storage due to reduced
infiltration capacity, total porosity and macroporosity, and
increased microporosity. Even though micropores retain more
water, it is under smaller matric potential and may be unavailable
to plants (Fabrizzi et al., 2005).

As an indicator of soil deformation susceptibility (da Veiga et al.,
2007; Vogelmann et al., 2012b; Braga et al., 2015), the soil
compressibility index was greater after soil tillage. In general,
higher values of the compressibility index were associated with
lower values of soil bulk density which can be explained by the fact
that this parameter defines the slope of the virgin compression
load range, i.e., there was no former strengthening process
involved. The tendency of decreasing compressibility index over
time indicates that without tillage soil reconsolidation, based
primarily on soil particles rearrangement by wetting-drying cycles
and development of plant rooting system and soil organisms, may
result in reduced soil susceptibility to compaction and therefore
less additional deformation when high loads (higher than
precompression stress) are applied to soil (da Veiga et al., 2007;
Chen and Weil, 2011).

Soil organic matter (Braida et al., 2006, 2008) and crop mulch
(Braida et al., 2006; Kaiser et al., 2013; Reichert et al., 2015c) exert a
cushioning effect of traffic partially dissipating the impact energy
applied to soil by machines. Krzic et al. (2004) showed, for forest
soils varying in texture (12–87% sand, 9–76% silt, and 2–53% clay)
and organic matter content (18–76 g kg�1 total C), that an increase
of 1% in organic carbon content reduces the maximum relative
density by about 11% irrespective of soil texture. In our study there
was a slight increase in the organic matter over time, especially in
the surface layer, and wheeling was over a layer of mulch in NTS.

Soil saturated hydraulic conductivity increased with time of
tillage type application even down to greater soil depths, even
though soil bulk density did not differ between the various
treatments. These effects make clear that soil management and
time of application are the most important parameters, and that
the greatest changes really are detectable and quantifiable using
intensity rather than capacity properties. Greater soil saturated
hydraulic conductivity, in intermediate soil layer (7–14 cm) for
NTS0.2, NTS1.5 and NTS14, have different explanations since there
are time-dependent effects. In NTS0 and NTS1.5 it may be due to
recent soil tillage by ploughing and harrowing, resulting in
increased soil pore volume and permeability, whilst in NTS14 high
hydraulic conductivity resulted from soil structural aggregation
and improved soil physical conditions by biological agents, mainly
growing plant roots that contribute to creating pore continuity,
and low macropore and high micropore volumes. No-tillage and
total or partial conservation of plant residues (mulch) on soil
surface are strategies for maintaining or improving soil physical
properties and processes (Bernoux et al., 2006), as reduced bulk
density (Cavalieri et al., 2009), soil erosion and runoff (Schäfer
et al., 2001; Bonumá et al., 2013; Didoné et al., 2014), increased
aggregate stability (Wohlenberg et al., 2004; Fabrizzi et al., 2005),
and soil hydraulic conductivity (Abreu et al., 2004; Bhattacharyya
et al., 2006).

Increasing air permeability as water matric potential decreased
for all soil conditions is a result of water drainage in large pores,
thereby indorsing the importance of air-filled porosity on air
permeability. Møldrup et al. (2001) and Dane et al. (2011) found
increasing air permeability as soil volumetric water content
declined, and this response resulted from draining pores previ-
ously occupied by water and emptying of irregularly-shaped pores
which could retain water, thus increasing the continuity of smaller
pores. Horn and Smucker (2005) and Vogelmann et al. (2012a)
asserted soils with high macropore volume drain more water at
high matric potentials, resulting in increased air space and
adequate soil aeration. This explains high values of air permeability
found in recently mobilized soil, where soil disturbance promoted
breakdown of original soil structure and allowed for larger-pores
(macropores) formation.

Soil consolidation and biological pore-formation or biological
chiseling (Abreu et al., 2004) are responsible for pore continuity in
the soil profile, and thereby increasing water conductivity and air
permeability. Greatest blocked porosity in surface layers of NTS0.2
and NTS1.5, regardless of trafficked and non-trafficked soil, are
possibly due to short time between soil tillage and soil sampling in
these conditions (Table 5). With time, there was a clear reduction
in obstructed porosity, irrespective of machine traffic. NTS3.5 soil is
apparently undergoing changes, and clogging of soil pores is no
longer apparent when compared to soil initial condition. Therefore,
with time there is always soil structural modifications and
biological activity, which improves soil air permeability even
without changes in bulk density or total pore volume, since bulk
density is mass per volume but the value does not tell you where
the mass in the volume is located. Growing roots compress the soil
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in regions adjacent to root walls and dead roots constitute
substrate for microorganisms (Bhattacharyya et al., 2006), thus
shaping a rigid, continuous porous structure responsible for air and
water flow in the soil (Møldrup et al., 2001; Dane et al., 2011). Soils
with air permeability as little as 1 mm2 may be considered as
impermeable; therefore, the intercept of the abscissa may be
regarded as an estimate of blocked air-filled pore space (blocked
porosity eb), which does not take part in the transport of air by
convection (Ball et al., 1988). For long-term no-till soils, Mentges
et al. (2015) concluded intensity properties are better descriptors
of the time-variable aeration status. They observed soil gran-
ulometry, moisture, and structure (soil deformation) affected
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properties: soil organic carbon, bulk density, pore size distribution,
field capacity, and plant available water; and the intensity
properties: soil precompression stress, compression coefficient,
hydraulic conductivity, air permeability, and blocked porosity.

Changes in capacity and intensity properties are a consequence
of soil pore and structure rearrangement (Fig. 7). We hypothesize
the initial aggregates are still the anthropogenically-formed ones,
while latter stages with pedogenetically-driven processes should
produce bigger aggregates, and finally again smaller, more
resistant ones. In this process, cracks create coarser aggregates,
repeated swell and shrinkage followed by shearing results in small
but rigid, and finally even mostly spherical aggregates. Thus, in
principle, we could have the aggregate type sequence: prismatic,
polyhedral, sub-angular blocks, and spheres. On the biological
level a crumbly structure would be the final status, which is mostly
macroscopically homogeneous.

Perturbing a steady-state increases entropy production, but
when the perturbation is removed the system returns toward the
steady-state, with entropy production declining toward an
eventual minimum. Maintenance of the capacity for self-organi-
zation is essential for entropy minimization (Addiscott, 1995).
Therefore, when replacing one ecosystem or agricultural produc-
tion system by another it is important to achieve a steady-state and
minimize entropy production. In our study 14 years of continuous
no-tillage is the lowest entropy state near steady-state, but the soil
remains in a “loosening” stage, where soil strength and soil
functions can still be optimized.
Fig. 7. Changes in soil structure with time of NTS ad
4.4. Summary of the discussion

The concepts of entropy and capacity/intensity properties
contribute to a better understanding of soil pore and structure
rearrangement of soil under no-tillage and wheeling. The search
for indicators to assess soil physical quality has been an exciting
task for research in recent decades, due to complex interactions
between soils and plants. These indicators are usually based on
direct and indirect factors of plant growth, like resistance to root
penetration, soil water availability and aeration, or other physical
properties/processes.

Soil physical capacity parameters define a general status, i.e.,
composition of a given volume, but not their internal structure and
function; while an intensity parameter includes dynamic aspects
over time and space and thus encompasses the functionality and
the reaction or processes of systems within the given environ-
mental conditions. Intensity properties are related to the more
dynamic processes of matter and energy flow and mechanical
deformation of the soil matrix, and are highly depend on soil pore
geometry and on aggregate resistance (Horn and Kutilek, 2009)

Linking capacity and intensity parameters, for our soil under
various management systems, reveals the predominance of flux
parameters to define the internal soil processes and the time
dependency to reach a new, more dynamic equilibrium state, as
suggested by Hartge and Horn (2009).

Farm machine traffic is a decisive factor for the sustainability of
soil management systems, and may cause soil degradation or
hinder the improvement of physical and hydraulic properties
option, for soil without farm machinery traffic.
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(Horn et al., 2003; Botta et al., 2011). Excessive traffic, i.e., above the
soil load bearing capacity, promotes short-term impacts in pore
structure by reducing macroporosity and increasing microporosity
and bulk density, and thus reducing air and water permeability. In
the long-term, this unfavorable condition for plant growth and
development ultimately restricts the increase in organic matter,
and does not favor soil structure reaching a new, improved
equilibrium state.

5. Conclusions

Tillage of soil previously under no-tillage system significantly
affects soil capacity properties, by resulting in high soil total
porosity and macroporosity and low bulk density, and soil intensity
properties, by increasing air permeability and saturated hydraulic
conductivity, down to 21 cm in the soil profile. However, these
changes due to soil tillage and disaggregation result in pore
obstruction, decreasing water permeability and soil aeration, and
in an increased precompression stress and soil susceptibility to
compaction, i.e, higher strength coincides with smaller sensibility.

Farm machine traffic causes adverse effects in soil capacity
properties, reducing soil total porosity and macroporosity, and
increasing bulk density. This more compact soil structure
constitutes an impediment to soil recovery and pore restructuring
after tillage, especially in soil surface layer and during the first
years of no-tillage, where soil is mostly unstructured and of low
load bearing capacity in less dense soil. However, harmful effects of
traffic become less noticeable with time of no-tillage and hence an
increase in water retention is observed fourteen years after soil
disruption by tillage.

After five years of no-tillage, there is an increase in micropo-
rosity and a small increase in soil organic carbon, especially in the
uppermost soil layer, resulting in increased soil water retention
and in plant available water, matric potential smaller than field
capacity, and increase in soil intensity properties (soil water
conductivity and air permeability), regardless of the effects of farm
machinery traffic. Over time with soil reconsolidation, lower
compression coefficient and lower degree-of-compactness occur
in upper soil layers. In the deepest layer and in absence of soil
disturbance there is an increase in soil degree-of-compactness and
bulk density.

The proposed conceptual framework shows that results in
capacity and intensity factors in controlled-traffic no-tillage soil is
highly dependent on adoption time of no-tillage. We proposed that
the following nomenclature to the different no-tillage states:
initial (1.5 years), intermediary (3.5 years), transitional (5 years),
and approaching a more stabilized stage (14 years).

The final stage of lowest entropy after 14 years of no-tillage is
near steady-state, but still in “loosening” process, in which
improvement of soil ecological properties and functions can still
be optimized with respect to both soil strength and soil functions.

The proposed framework is valid for highly-weathered clayey
soils, with kaolinitic and oxidic clays, and should possible also be
applicable to sandier/siltier soils. However, for less-weathered
soils with 2:1 type clays further studies are needed to test the
validity of this framework.
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