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Perspectives on the use of unmanned
aerial systems to monitor cattle
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Abstract
The use of unmanned aerial systems (UASs) in agriculture has been growing steadily in the last decade, but their use to
monitor and count cattle has been very limited. This article analyses the reasons for this apparent lack of progress,
considering both the technical challenges and the difficulties in defining target users who would benefit from a UAS-based
system for monitoring cattle. Such an analysis is combined with the findings reported in several investigations dedicated to
counting and monitoring wildlife to draw a comprehensive picture on the current situation, to suggest possible solutions
to technical issues and to delineate applications that could be useful to both cattle farmers and governments. The text
concludes by showing that there are unexplored viable uses for UAS in livestock monitoring, especially in countries like
Brazil, where extensive stockbreeding prevails.
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Introduction

Monitoring livestock population is an essential part of the

farm management. However, this may not be a trivial task,

especially in very large properties adopting extensive

stockbreeding, which is very common in countries like

Brazil. In this context, aerial surveys arise as a potential

solution. Satellite images are not well suited for this task,

because most sensors do not have enough spatial resolution

to resolve individual animals – sensors such as GeoEye-1

and WorldView could theoretically deliver enough resolu-

tion (Xue et al., 2017), but even in this case cattle would be

represented by only a few pixels, and the cost of the images

is still very high. Furthermore, cloud contamination can

obscure features of interest (Anderson and Gaston, 2013).

Using manned aircraft for surveying cattle farms,

although technically feasible, has a number of drawbacks

associated: operation costs are high, elevated noise levels

associated with most aircraft can disturb animals (Chrétien

et al., 2015; Christie et al., 2016), accidents can cause loss

of human life (Chabot and Bird, 2015; Chrétien et al., 2015)

and aircraft are not always suited for the installation of

image sensors. Given the limitations associated with satel-

lites and manned aircraft, the use of unmanned aerial sys-

tem (UAS) appears as a more viable option to tackle the

cattle monitoring issue (Zhang and Kovacs, 2012).

Most UASs are lightweight, low-cost aircraft platforms

consisting of an aircraft component (unmanned aerial vehi-

cle (UAV) also known as drone), sensor payloads and a

ground control station (Anderson and Gaston, 2013; Watts

et al., 2012). Basically, there are two types of drones that

can be used in agricultural applications: rotary, which are

very portable but have limited sensor payload capabilities;

and fixed-wing platforms, which tend to be faster and have

better payload capabilities, but are usually less portable and

more expensive to acquire and operate. One of the main

advantages of UAS is that they come in such a wide variety

of configurations and capabilities (Hogan et al., 2017) that

technical requirements attached to any given application

are likely to be met by some available system. Although

extrinsic factors such as costs involved and government

regulations may discourage UAS use (Watts et al., 2012),

prices continue to fall and many regulatory barriers are

being removed, so adoption levels are expected to increase

in the near future (Hogan et al., 2017).

UASs have been used in agricultural applications for

some time, especially in the context of precision agriculture

(Beloev, 2016; Hunt et al., 2014; Zhang and Kovacs, 2012).

Currently, the only country to adopt them in large scale is

Japan. This is facilitated by the small average farm size, in

which case small electric rotary wing systems are more

cost-effective (Freeman and Freeland, 2015). However, in

the last few years, there has been a steep growth in coun-

tries like the United States, where agricultural applications
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already account for 19% of the whole UAS market (Hogan

et al., 2017).

The use of UAS for monitoring livestock, and cattle in

particular, has been limited. A few academic investigations

on this subject have been dedicated to animal detection and

counting (Chamoso et al., 2014; Longmore et al., 2017),

cattle round-up (Jung and Ariyur, 2017), feeding behaviour

(Nyamuryekunge et al., 2016) and health monitoring

(Webb et al., 2017). There have been also some patents

deposited (Horton and Vorpahl, 2017a, 2017b; Trumbull

and Myrtle, 2017). The reasons for this apparent lack of

progress on the subject range from technical difficulties to

regulation limitations, as discussed in the next section.

In contrast, the use of drones to monitor wildlife is stea-

dily increasing (Chabot and Bird, 2015; Christie et al.,

2016; Gonzalez et al., 2016; Linchant et al., 2015). In the

specific case of terrestrial mammals, there are investiga-

tions dedicated to deer (Chrétien et al., 2015, 2016; Franke

et al., 2012; Israel, 2011; Witczuk et al., 2017), elk

(Chrétien et al., 2015), hippopotamus (Lhoest et al.,

2015), rhinoceros (Mulero-Pázmány et al., 2014),elephants

(Vermeulen et al., 2013) and so on. Many of the conditions

and challenges faced by those studies are applicable to the

problem of cattle monitoring. Because of that, part of the

reasoning presented throughout the text draws elements

from those studies.

This article provides a comprehensive discussion on the

main technical, practical and regulatory challenges and

barriers that still prevent the use of UAS for cattle moni-

toring, especially in the case of animal counting. Possible

solutions are proposed, always focusing on small rotary and

fixed-wing aircraft, and on automatic methods to detect and

count animals. Some possible clients to a UAS-based mon-

itoring system are also identified, and respective potential

benefits are highlighted.

UAS and sensors relevant for cattle
monitoring

In this text, the acronym UAS is used whenever referring to

the whole system, while UAV refers to the aircraft itself.

UAV sizes range from a few grams (e.g. AV Nano

Hummingbird) to hundreds of kilograms (e.g. NASA

Ikhana) (Watts et al., 2012), and their maximum payload

is usually proportional to their weight. For agricultural

application, intermediate sizes usually offer the best cost/

benefit ratio, but the best choice will ultimately depend on

the sensors needed for the intended application and on

budgetary constraints (Anderson and Gaston, 2013).

Despite their lower endurance, electrical UAVs are usually

preferred over those using fossil fuel, as they are more

practical, silent and stable (Linchant et al., 2015).

UAV types and characteristics

Rotary UAVs are small helicopter-like aircraft that have

four (quadcopter) to eight (octocopter) sets of rotating

blades, arranged either around a central body or along two

opposing arms (Anderson and Gaston, 2013). This kind of

UAV has a few advantages: they can hover over fixed

targets, can stay airborne even when one of the rotors loses

power, exhibit less vibration than fixed-wing systems and

are easier to operate and tend to be cheaper. On the other

hand, they are slow, can carry only a limited payload, can

cover only relatively small areas (Anderson and Gaston,

2013) and are unstable with winds above 25 km/h (Miller

et al., 2017).

Fixed-wing UAVs are airplane-like aircrafts that can

typically travel up to a few kilometres from the launch site,

although regulations usually require that a visual line

of sight from the operator be maintained permanently

(Anderson and Gaston, 2013). Fixed-wing aircraft are

typically hand-launched and land on their belly, thus

minimizing components required for launch and recov-

ery (Linchant et al., 2015). These UAVs are usually

faster, use less power, are better suited to strong wind

conditions and can cover larger areas and carry more

payload than the rotary ones (Miller et al., 2017). How-

ever, they tend to be more expensive, more difficult to

operate, less manoeuvrable and images captured tend to

exhibit stronger smearing effects, both due to aircraft

speed and associated vibrations.

Although UAVs can be flown manually, professional

uses rely primarily on integrated flight systems that enable

better precision, stability and replicability. This is achieved

by the inclusion of GPS-enabled autopilots, inertial mea-

surement units, battery monitor systems and emergency

landing systems. Flights can now be planned and executed

through tablet or smartphone applications, and autopilot

systems can be altered mid-flight (Hogan et al., 2017). All

technical aspects of UAS are being continuously improved,

making them easier to use, less prone to mechanical failure

and more robust to user error.

Sensor types and characteristics

There is a wide variety of sensors that can be attached to a

UAS, with weight being the only major practical constraint.

With the constant miniaturization of sensors and reduction

of costs associated, it is now possible to deploy sophisti-

cated instruments using lightweight, low-cost UAS,

although deploying multiple sensors simultaneously is still

largely unfeasible (Anderson and Gaston, 2013). There are

a few sensors (mostly imaging devices) that can provide

useful information for livestock monitoring:

� RGB: These are conventional cameras that capture

images using three components of the visible spec-

trum (red, green and blue) and are mainly used for

the creation of true colour orthomosaics (Hogan

et al., 2017). These sensors tend to be cheap, and the

resulting images are a close depiction of the way

humans would perceive the scene.

� Thermal: This type of camera detects variations in

heat using the long-wavelength infrared band. They

can be used to detect livestock (Longmore et al.,

2017) or wild animals (Miller et al., 2017; Witczuk

et al., 2017), as those usually have higher
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temperatures than their surroundings. Another

advantage of thermal cameras is that they can be

used during night-time (Linchant et al., 2015). On

the other hand, they tend to have much lower spatial

resolution than other types of sensors (Chabot and

Bird, 2015).

� Multispectral: These cameras capture images at spe-

cific wavelengths (four to ten), some of which

located in the visible band, and the remaining ones

located either in the near-infrared band (more used

for vegetation detection) or in the thermal band (ani-

mals). Some features of the objects of interest may

be more prominent in specific wavelengths, which

can be explored to improve the detection process.

Also, bands may be combined in order to reveal

other types of relevant information (e.g. normalized

difference vegetation index). Multispectral sensors

may be used to identify and count animals, as differ-

ent species may have different spectral signatures

(Terletzky et al., 2012). These sensors tend to have

a lower spatial resolution than the RGB ones (Chabot

and Bird, 2015).

� Hyperspectral: As in the case of multispectral cam-

eras, this kind of sensor captures images at specific

wavelengths, but in this case having a much higher

spectral resolution (hundreds of wavelengths). These

sensors tend to be very expensive, and the spectral

resolution provided is not needed for animal detec-

tion and counting; however, they may be useful to

detect subtler traits, such as breed and the presence

of disease.

� Video cameras: This kind of sensor yields a more

manageable single output file (Chabot and Bird,

2015) and is especially suitable to detect movement

and track individual subjects (Fang et al., 2016). In

the case of cattle counting, however, high-resolution

still images are more appropriate.

Using UAS for cattle monitoring – barriers
and possible solutions

There are several factors that need to be considered regard-

ing the use of UAS for cattle monitoring. Those factors are

here divided into six classes: aircraft, sensor, environmen-

tal, operational, image capture and processing and specific

factors. This division is an expansion of the classification

suggested by Anderson and Gaston (2013).

Aircraft factors

Payload and battery capacity. As discussed earlier, light-

weight UAVs have limited payload capacity. This affects

not only the sensors that can be deployed but also con-

strains the size of the batteries and, as a result, limits flying

time (Anderson and Gaston, 2013). Considering that UAS-

based cattle monitoring would be most useful in large prop-

erties, these limitations become very relevant. There are a

few solutions for this problem, although all of them also

have some shortcomings associated:

� Fly higher: Given that flying time and speed are

limited, larger areas can be covered by increasing

flying altitude. Most UAVs can reach altitudes of

at least a few hundred metres, but regulations may

impose some limitations (for details, see the ‘Opera-

tional factors’ section). Higher altitudes also mean

that the objects of interest (animals) will be repre-

sented by fewer pixels, making their identification

more challenging (for details, see the ‘Image capture

and processing’ section). Winds also tend to be more

intense, increasing vibration (degrading image qual-

ity) and probability of system loss (for details, see

the ‘Environmental factors’ section). Additionally,

since the aircraft will be farther away from the oper-

ation centre, loss of communication becomes more

likely. With the exception of regulation limitations,

all of the problems mentioned are manageable with

careful planning, monitoring and testing.

� Go bigger: Larger UAVs usually have higher pay-

load limits, allowing the use of larger batteries that

increase flying times. Larger UAVs also tend to be

faster and fly higher (regulations may hamper this

advantage), further increasing the maximum cover-

age attainable in each mission. These aircraft also

tend to be expensive, require special launching con-

ditions, and may also require a specific pilot licence

to be operated; in Brazil, such licence is required for

UAVs weighing more than 25 kg (for details, see the

‘Operational factors’ section).

� Fly in formation: Theoretically, large areas could be

covered through several missions. The problem with

this approach for cattle monitoring is that animals

can move in the time between missions (for details,

see the ‘Specific factors’ section), which would

make counting unreliable. One possible way to miti-

gate this problem would be flying several UAVs in

formation, capturing the images simultaneously.

This option entails two problems. First, the cost of

acquiring many UASs may be too high compared

with the resulting benefit. Second, although several

studies have shown the feasibility of flying UAVs in

formation (Sharma and Kumar, 2015; Wang et al.,

2017), there are still many technical issues to be

resolved (Andre et al., 2014).

� Explore solar energy: Installing solar panels in

UAVs could greatly increase flight times. There

have been some initiatives to mount solar panels in

fixed-wing UAVs (Anderson and Gaston, 2013; Sri

et al., 2016), and there are some companies, such as

Alta Devices (Sunnyvale, California, USA), that are

investing in this technology.Although considerable

progress has been made for large UAVs, the appli-

cation of this technology to small UAVs is still too

incipient to be used in practical applications.

As technology evolves, some of the problems related to

payload capacity are minimized, and more suitable solu-

tions arise. It is also worth noting that governments are

beginning to employ powerful UAS for surveillance and
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inspections; as a side task, those missions could gather data

suitable for animal population estimation, which is of inter-

est for both producers and the government.

Landing. Landing UAVs in rough terrain, which is common

in cattle areas, may be challenging, especially in the case of

fixed-wing aircraft. If not planned properly, gliding to a

landing position may cause damage to aircraft and sensors.

To minimize damage in case of unsuccessful landing, it is

recommended to keep aircraft and payload weight substan-

tially below nominal limits (Anderson and Gaston, 2013).

As fixed-wing UAVs become more accessible, compact

and transportable (Colefax et al., 2017), risks are reduced

and landing requirements become less stringent.

Costs. Small UAS capable of handling most agricultural

applications in general cost less than US$10.000, and prices

are still falling (Hogan et al., 2017). However, cattle farms

often are large, in which case more advanced UAS, capable

of covering larger areas and gathering more information in

less time, may be necessary (Freeman and Freeland, 2015).

Additionally, low-end UAVs are usually more prone to

mechanical failure, which may cause damage not only to

the aircraft but also to the sensors (Mulero-Pázmány et al.,

2014). Considering that the threat of crashes is always

present (see the ‘Environmental factors’ section), costs

may become too high in comparison with the potential

gain. Other potential sources of costs include the software

needed to process and interpret the images (Miller et al.,

2017), the computational infrastructure to store the data

collected, the training required to operate the whole system

and the man-hours spent to set up and carry on the surveys.

Ultimately, costs and benefits will strongly depend on the

characteristics of the properties and on the intended uses, so

a careful economical and technical analysis is recom-

mended before deciding whether UASs are advantageous

or not. It is important to consider that the UAS industry is

far from mature, with technologies evolving rapidly, costs

steadily falling and regulations changing towards a better

balance between safety and usability. As a result, viability

studies should be carried out regularly in order to take the

latest changes into account. It is also worth pointing out

that aerial surveys using UAS can be offered as a service by

third-party companies, greatly reducing risks and costs if

surveys do not need to be carried out too frequently.

Sensor factors

The small payload capacity of lightweight UAVs limits

the size and amount of sensors to be deployed. As sensors

are miniaturized, the payload issue becomes less limiting.

However, in the specific case of imaging sensors, there is

a trade-off between miniaturization and data quality (Roy

and Miller, 2017). This has to be taken into account for

cattle monitoring, because depending on the image

resolution, optical distortions may render animal identifi-

cation unfeasible.

In general, only a single sensor can be deployed in each

flight. Thus, if the intention is to employ multiple sensors,

they have to be deployed in separate flights. However,

since animals may move between flights, it may be difficult

to combine the information gathered by each sensor. In

such a context, techniques that rely on multiple data

sources to perform animal identification and counting may

not be reliable.

Automating the image analysis is essential for the via-

bility of UAS for livestock monitoring (see the ‘Image

capture and processing’ section). Thus, it is important to

consider that techniques to analyse images in the visible

range have received much more attention and are consid-

erably more mature than techniques exploring other bands

of the spectrum (Longmore et al., 2017). Thus, the use of

different types of sensors may require that some effort be

spent on the development of algorithms suitable for the

task at hand (for details, see the ‘Image capture and pro-

cessing’ section).

Cost is also an important factor when choosing the sen-

sors to be deployed. Although there are many lightweight,

low-cost RGB sensors available, they do not always deliver

the optical quality required by some applications. Also,

more specialized sensors such as thermal, multispectral and

hyperspectral tend to be considerably more expensive than

the RGB ones. As a result, it is always important to con-

sider the trade-off between the potential gain in accuracy

and the cost associated with more sophisticated sensors.

Environmental factors

The threat of crashes and equipment loss is always present,

as there are many hazards that can cause a UAV to crash:

high winds, birds of prey, power lines, trees, signal loss and

so on. Although careful planning and monitoring can

greatly reduce the risk, incidents are sometimes unavoid-

able, potentially causing damage to aircraft and sensors.

Also, in many cases, the crashed equipment can be

retrieved with ease, conditions such as rough terrain and

dense canopy cover may make it difficult, or even prevent

aircraft recovery (Anderson and Gaston, 2013). Since

equipment damage and loss are relatively common, it is

recommended that spare parts, and even extra UAVs, be

always available for replacement, especially when there are

time constraints for completing the survey.

Besides increasing the risk of crashes, high-speed winds

may cause yaw, pitch and roll movements and affect the

speed of the aircraft. They also require more work from

stabilization mechanisms, thus increasing energy consump-

tion and reducing mission endurance (Chrétien et al.,

2015). Due to their small size and weight, rotary UAVs are

particularly vulnerable to wind, but the impact on the qual-

ity of the images will depend largely on the equipment

being used – UAVs with more blades seem more robust

to adverse weather conditions (Goebel et al., 2015). In any

case, angular movements may alter the overlapping

between images and deflect sensors from nadir, thus dama-

ging the mosaicking process and introducing a variety of

distortions. Correcting such complex distortions is not a

trivial task and may require the use of reference mosaics

(Chrétien et al., 2015). To reduce the effects of angular
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motion caused by aircraft movement, some authors recom-

mended that sensors be mounted in three-axis gyrostabi-

lized gimbals (Chrétien et al., 2015). However, some

movement of the camera relative to the ground will inevi-

tably happen as a result of sensor error and response latency

(Harvey et al., 2016).

Operational factors

UAVs may be challenging to pilot and the learning curve

may be steep, even if GPS-enabled navigation is included

(Anderson and Gaston, 2013). Take-off and landing, in

particular, require some proficiency to avoid incidents.

Rotary aircraft are in general easier to operate due to the

vertical take-off and landing. Large aircraft, on the other

hand, may require special training and a pilot licence – in

Brazil, any UAV weighing more than 25 kg can only be

operated by a licensed pilot (National Civil Aviation

Agency (ANAC), 2017).

Many investigations on the use of UAS in agriculture

mention the difficulty in integrating all different expertises

to properly extract and explore relevant information from

the data collected. In particular, farmers might lack the

necessary skills to extract reliable information from UAS

images, and remote sensing scientists may be unfamiliar

with the field and crop conditions (Zhang and Kovacs,

2012). However, in the case of animal counting, the prob-

lem is well posed and does not depend strongly on field

characteristics and conditions. Additionally, automatic

methods for scene analysis are very feasible (see the ‘Image

capture and processing’ section; Barbedo, 2012), so no

complex analysis or interpretations are needed.

The strict regulatory rules that are still in force in most

countries around the globe are among the most important

barriers for the adoption of UAS, no matter the application

(Freeman and Freeland, 2015). Motivations behind these

restrictions include safety of people and security against

the misuse of UAS (Watts et al., 2012). As the technology

evolves and the uses of UAS are better understood, regu-

lations tend to achieve a better balance between security

and practical use viability. A summary of the main rules

in force in the United States, European Union (EU) and

Brazil is presented below. It is important to emphasize,

however, that regulations are constantly changing, so it is

always recommended to check the most current docu-

ments on the subject.

In the United States, the Federal Aviation Administra-

tion (FAA) regulates the use of UAS. The following rules

should be observed when using UAS for cattle monitoring

(Federal Aviation Administration, 2018): a remote pilot

certification should be obtained, which requires the person

to be at least 16 years old, pass an aeronautical knowledge

test at an FAA-approved knowledge testing centre, and

undergo a Transportation Safety Administration security

screening; the aircraft must be registered upon payment

of a US$5 fee; a special exemption is needed for aircraft

weighing more than 25 kg (payload included); fly in uncon-

trolled (class G) airspace; keep the aircraft within visual

line of sight; fly at or below 120 m; fly at or under 160 km/

h; yield right of way to manned aircraft; do not fly directly

over people; and do not fly from a moving vehicle, unless

in sparsely populated areas.

In the EU, until the end of 2017 the regulation of

unmanned aerial systems (UAS)” with maximum take-off

mass of 150 kg was the competence of each member state.

In 22 December 2017, a political agreement extended the

EU competence to cover the regulation of all civil

unmanned aerial systems (UAS), regardless of their maxi-

mum take-off masses (European Aviation Safety Agency

(EASA), 2018). By mid-2018, the final text for the unified

regulations was still being discussed, but the probable rules

to be enforced had already been defined, as described next.

In order to fit the Open category, which has less stringent

rules, the aircraft should weigh less than 25 kg, only be

flown within visual line of sight and not be flown higher

than 120 m above ground level. Most operations for cattle

counting are likely to fit the A3 subcategory (Fly Far from

People), which has some specific rules: fly in an area where

it is reasonably expected that no uninvolved people will be

endangered; keep a safety distance from urban areas; pilot

should undergo online training and testing; UAV should

possess lost-link management, selectable height limit and

frangibility; the minimum age to operate the aircraft should

be defined by each EU member state (EASA, 2018).

In Brazil, UAS use is regulated by the National Civil

Aviation Agency. The main rules currently in force are the

following (ANAC, 2017): a pilot licence is needed to oper-

ate aircraft over 25 kg, UAVs must maintain a distance of at

least 30 m (horizontally) from people, unless authorized

otherwise; special authorization from the airspace authority

is needed if the aircraft is expected to reach altitudes above

120 m and/or if the aircraft is expected to leave visual line

of sight in any moment; fully autonomous flights, in which

the pilot cannot intervene at any moment, are not allowed.

As it can be seen, many of the rules are common to most

countries. Among those, arguably the one that has the

greatest impact in cattle monitoring is the need to keep a

visual line of sight at all times. Considering that many

cattle farms are extensive, broad surveys may be rendered

unfeasible by this constraint. Although exemptions to this

requirement may be granted, the process is complex and

tends to be slow. It is also worth noting that this situation is

common to most countries (Chrétien et al., 2016; Colefax

et al., 2017; Watts et al., 2012).

Image capture and processing

Images captured during UAV flights are subject to a series

of geometric distortions that need to be corrected (Zhang

and Kovacs, 2012). This action allows the images to be

properly combined into a single picture through mosaick-

ing, so the scene can be interpreted correctly. This whole

process is not trivial (Lisein et al., 2013) and has the poten-

tial to introduce errors as the one depicted in Figure 1,

especially if cheaper cameras prone to pincushion and bar-

rel effects are employed (Miller et al., 2017). In order to

partially counteract possible errors, high levels of image

overlapping are adopted, which increases the amount of
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data to be stored and processed. This leads to another prob-

lem: building image mosaics is a computationally intensive

task, especially if many images are present (Zhang and

Kovacs, 2012). Thus, if time is an important factor, consid-

erable computational power needs to be available for a

timely response. There are many other problems that are

common to all remotely sensed images: instrument calibra-

tion, atmospheric correction, vignetting correction, line-shift

correction, band-to-band registration and frame mosaicking

(Zhang and Kovacs, 2012). However, which of those need to

be addressed and which correction techniques must be

applied will depend on the application. In some instances,

relevant information will clearly come through most distor-

tions, obviating the need for sophisticated and computation-

ally expensive correction tools. This fact also stresses the

importance of conducting thorough investigations to clearly

outline the requirements of each specific application.

Most mosaicking algorithms rely on distinctive features

to properly build the mosaics. Therefore, if the scene being

analysed is predominantly homogeneous, errors may occur.

Vegetation areas, and pastures in particular, may not have

enough variations or reference objects to properly guide the

mosaicking process. Also, wind may change the details

found in pictures of the same areas taken at different

moments, further stressing the ability of mosaicking algo-

rithms to find the correspondence between images. The

robustness to relatively featureless and varying scenes is

highly dependent on the algorithm being used, so some tests

may be necessary to find the best option.

Another problem that may occur is the loss of images due

to data corruption. If the images are not stored in the aircraft

itself, communication link failures may also cause loss of

information. This type of problem may occur even if very

reliable equipment is employed. Using redundant systems is

not a good option due to payload limitations and costs

involved. A practical way to avoid that some areas be com-

pletely devoid of data associated is to ensure that all images

are captured with at least 50% overlap between them, thus

guaranteeing that every point on the ground is imaged at

least twice, at the expense of more data to be processed.

A direct conclusion that can be drawn from the problems

discussed earlier is that the fewer the number of image

captures needed to cover a given area, the less damaging

will be those issues. In other words, images should be cap-

tured from the highest possible altitudes with minimum

overlap between them. The minimum level of overlapping

will depend directly on the characteristics of the terrain, on

the robustness of the mosaicking algorithm and on how

critical it is to avoid areas with missing data. The ideal

height is the maximum altitude above which the sensors

of choice no longer deliver enough resolution for robust

identification of the objects of interest (Longmore et al.,

2017), as long as legal limits are observed. Although the

best possible set-up can only be attained by carefully study-

ing the specific characteristics of each survey, it should be

possible to derive some general guidelines that are a rea-

sonably good fit in most cases.

Counting animals manually is prohibitively time-

consuming (Longmore et al., 2017) and prone to psycho-

logical and cognitive phenomena that may lead to bias and

optical illusions (Barbedo, 2016). As a result, using auto-

matic methods to analyse the images and extract relevant

information is crucial. The automatic identification and

counting of animals using remote sensing images is not

trivial, even if the images are completely free of distortions

and animals do not move. Pixel values are very sensitive to

changes in illumination, camera conditions and object

orientation (Chamoso et al., 2014). Also, shadows cast both

by target objects and other structures in the scene may

hamper the detection and segmentation process. Thus, find-

ing a stable pattern that fully characterizes the objects of

interest is unfeasible. Instead, automatic methods should be

flexible enough to deal with a high degree of condition

variations. Some authors indicate that using object-based

image analysis may counteract some of the problems asso-

ciated with pixel value variability (Chrétien et al., 2016).

Another alternative that is quickly gaining momentum is

using deep learning techniques, which try to model high-

level abstractions in data by learning patterns from large-

scale unlabelled data. In the specific case of remote sensing

data, this kind of technique has the potential to achieve

good results without explicitly taking into account the

many factors that influence the classification (Goodfellow

et al., 2016). It is important to emphasize, however, that

this type of technique requires large image databases to be

properly trained, which may be difficult to obtain.

Among deep learning tools, arguably the most com-

monly used are the convolutional neural networks (CNNs)

(Krizhevsky et al., 2012). This kind of neural network

requires fewer artificial neurons than conventional feedfor-

ward neural networks, being particularly suitable for image

recognition. CNNs usually require a very large number of

samples to be trained; however, in many real-world appli-

cations, it is expensive or unfeasible to collect the training

data needed by the models (Pan and Yang, 2010). Thus,

many authors are applying the concept of transfer

learning to reuse pretrained networks (e.g. GoogLeNet and

AlexNet), in which case predictions are done on examples

that are not from the same distribution as the training data

(Bengio, 2012). The conjunction of deep learning and

transfer learning, together with the development of

Figure 1. Part of the animal is deleted by the mosaicking process.
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graphics processing units, has provided a powerful tool for

animal recognition and counting (Chamoso et al., 2014).

Other techniques used in image analysis for animal detec-

tion include the k-nearest neighbours and support vector

machine classifiers (Gemert et al., 2015; Smit, 2016), Itera-

tive Self-Organizing Analysis Technique (ISODATA)

(Terletzky and Ramsey, 2016), mathematical morphology

(Fang et al., 2016), deformable part-based model (Gemert

et al., 2015), pixel intensity thresholding (Gonzalez et al.,

2016), template matching (Gonzalez et al., 2016) and back-

ground subtraction (Weinstein, 2017).

As mentioned in the ‘Sensor types and characteristics’

section, thermal sensors have good potential for cattle mon-

itoring. Many of the observations above also apply to this

kind of sensor, but there are also some specific considera-

tions that should be made. To be effective, object detection

using thermal sensors requires that the difference in tempera-

ture between the object and its surroundings be detectable;

the larger such a difference, the more likely is the correct

detection. Thus, it is recommended that image captures be

carried out when ground temperatures are lower (night and

early morning), especially during warmer seasons (Witczuk

et al., 2017). It is also important to consider that heat emis-

sions vary during the day due to both physiological and

environmental aspects (Chrétien et al., 2016), which may

cause confusion with other elements in the image.

Specific factors

As mentioned earlier, animals move over time. Thus,

unless the whole area to be surveyed is imaged in a single

snapshot, which is only possible with satellites, animals

will shift positions as images are captured. However, as

discussed earlier, satellite images are not very suitable for

livestock monitoring. As a result, some animals can appear

in more than one image (Witczuk et al., 2017), others may

not appear at all, and others may have only part of their

bodies imaged. This, together with all technical aspects

involved in the capture and processing of the images (see

the ‘Image capture and processing’ section), makes it very

difficult to obtain the exact number of animals in a given

area, either by counting manually or by automatic methods.

However, if good approximations are to be obtained, some

correction factor to compensate for all sources of errors

must be developed and applied whenever appropriate

(Chrétien et al., 2015). This will require a research effort

in which all factors, from animal movement patterns to the

impact of mosaicking errors, will have to be investigated.

The time of the day in which images are captured also

play an important role. Animals tend to seek shelter under

trees when the temperature is high, so planning missions for

the hottest periods of the day is not adequate. This recom-

mendation is even more important in the case of thermal

images, because ground objects such as rocks may become

very hot and be wrongly detected as an animal (Chrétien

et al., 2016). It is also important to consider that shadows

increase in size the closer to sunrise or sunset. There are

other physiological processes that regulate the way animals

move, all of which must be taken into account in order to

select the best times for the flights. It is worth noting that

the behaviour of cows does not seem to be affected by the

presence of drones (Longmore et al., 2017; Nyamurye-

kunge et al., 2016).

Even if missions are carefully planned to maximize the

number of animals visible from above, areas containing

trees will most certainly have at least a few animals hidden

beneath the canopies. This fact, which in most cases is

unavoidable, has to be taken into consideration for accurate

estimates. Statistical models have been shown to improve

the ability to estimate the distribution of organisms (Martin

et al., 2012). If properly fed with relevant information

(canopy cover, weather, topography, etc.), this type of tool

may be very useful in the context of cattle counting.

Detection using RGB images rely on colour differences

between animals and surroundings. In Brazil, the most

common cattle breed is the Nelore, which is generally of

white colour, providing a good contrast with the ground.

Other breeds, however, may have colours similar to the

surrounding vegetation. This can significantly increase

the level of difficulty of the automatic detection task, to

the point where it is necessary to develop specific algo-

rithms to deal with those particular conditions (Linchant

et al., 2015). Another possible solution would be using

sensors that explore other parts of the spectrum (multispec-

tral, thermal). Another factor that may cause problems to

automated counting tools is that cattle sometimes tend to

group together (Figure 2), so some rules of object separa-

tion must be applied in order to avoid error.

Finally, it is worth mentioning that, in the case of small

properties and confined cattle, other monitoring tech-

niques, particularly those based on radio-frequency identi-

fication (Adrion et al., 2017), may be more reliable and

cost-effective than UAS.

Conclusion

Currently, the vast potential of UAS as a tool to help cattle

farmers to manage their properties cannot be fully realized

due to technical and practical issues that still need better

solutions and especially due to regulations that are still

Figure 2. Animals grouped together require specific
segmentation.
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overly stringent. However, market pressure and technolo-

gical evolution will probably lead to a relaxation of the

rules, a process that has already started in many countries.

This work aimed at identifying the main barriers to the

use of UAS in cattle farming, proposing some solutions for

current problems and presenting some perspectives on

future developments. The main conclusion that can be

drawn from the literature and from the authors’ personal

observations is that there is a sense of inevitability when it

comes to UAS applied to agricultural tasks: as technical,

practical and regulatory problems are overcome, it is likely

that the use of UAS will surge. A study carried out in the

United States indicated that many cattle farmers especially

the younger, well-educated ones are willing to adopt the

UAS technology as soon as it becomes a viable option

(Allmon, 2013). When this happens, it is important that

expectations be kept at realistic levels to avoid the well-

known hype-disillusionment cycle, which delays or even

prevents a technology from becoming widespread (Free-

man and Freeland, 2015).

The UAS technology is still in its infancy. It is also

evolving so rapidly that scientists and legislators are having

trouble keeping up with the pace of technical advance-

ments, which is necessary for realizing the full potential

of this technology. With plenty of scientific questions still

unanswered, this represents an excellent opportunity for

researchers to explore. In turn, early adopters among farm-

ers may gain competitive advantages and become familiar-

ized with the technology before it becomes widespread.
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