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ARTICLE INFO ABSTRACT

Keywords: Biodiversity assessment is considered an important indicator of ecosystem health by various initiatives world-
Biodiversity wide. Satellite remote sensing (SRS) has allowed the development of tools that can assist with the practical
Caatinga search of information related to species richness. The aim of this study was to test whether Landsat satellite
Landsat

spectral variables could be used as indicators of plant species diversity in the Caatinga, the largest nucleus of dry
forest in South America. To obtain plant diversity data (richness and Shannon's index), an exhaustive search of
plant phytosociological studies carried out in Caatinga was conducted. Pearson's correlation and PCA analysis
was used to test the association between spectral variables and plant diversity. Regressions were used to test the
models that best explain species richness. The results indicate that a positive correlation exists between richness
and the near-infrared (NIR) spectral band (r = 0.744; p < 0.001). This spectral band was also responsible for
explaining better the variation of leaf level reflectance among eight species that occur in the region (df = 7;
F = 26317.55; p < 0.001). Therefore, the NIR band variable can be used as an indicator of species richness
using power and quadratic regression models, because they were one of the best fit association recorded between
spectral variable and plant diversity index, when compared to other studies in natural environments. Thus, we
provide important information about biodiversity that can be used in different researches, from ecological
modeling for theoretical approaches to practical applications in Caatinga. The potential use of Landsat satellite
imagery to estimate species richness makes biodiversity assessments easier and provides a continuous source of
data for monitoring in Brazilian semiarid region.

Remote sensing

1. Introduction

Biodiversity assessment is considered an important indicator of
ecosystem health by various initiatives worldwide (Skidmore et al.,
2015), such as the Group on Earth Observations (GEQ), the Interna-
tional Geosphere-Biosphere Program (IGBP) under the International
Council for Science, and the World Climate Research Programme
(WCRP) (Rocchini et al., 2016). Species diversity assessments are
usually based on surveys of local diversity (alpha diversity — o) within a
given habitat or community; surveys of regional diversity (gamma di-
versity — y), which correspond to the diversity of large areas; and sur-
veys of beta diversity (B), which reflect changes in species composition
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in an environmental gradient (Rocchini et al., 2016; Valentin, 2012).
Several indices are used to estimate a-diversity, with species richness
and the Shannon-Wiener index being among the most commonly used.
Species richness is a basic biodiversity indicator and the center of
several ecological models and conservation policies (Giorgini et al.,
2015; Rocchini et al., 2007, 2016).

A complete inventory of all species inhabiting large areas is utopian,
as it is impractical for field biologists to inspect every organism in a
region and monitor changes in species composition over time.
Additionally, biodiversity assessments through field surveys face sev-
eral challenges, for example: (1) defining the number of sampling units;
(2) choosing the sampling design, which can impact the results and
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Fig. 1. Location of the study area, highlighting the Caatinga region and state borders (IBGE, 2010).

comparisons of distinct areas; (3) operationally defining the community
to be considered; (4) experiencing a slow and costly process; and (5)
experiencing difficulties in accessing remote areas (Rocchini et al.,
2016; Scott and Hallam, 2003).

Satellite remote sensing (SRS) includes tools that can assist with the
practical search of information related to species richness and, conse-
quently, can attenuate the problems presented above, given its low cost,
greater operability, greater spatial coverage, and its potential to pro-
vide a continuous source of information on biodiversity distribution
(Wang, 2012). In a time of intense and rapid environmental changes,
SRS presents an opportunity for the acquisition of critical data for
spatiotemporal biodiversity monitoring (Pettorelli et al.,, 2014;
Skidmore et al., 2015). However, most studies on environmental
monitoring through SRS use vegetation indices, which are indicators of
the quantity and conditions of the green vegetation, or classification
techniques, which group spectrally similar areas and map vegetation
according to its main physiognomies (Beuchle et al., 2015; Hansen
et al,, 2013; IBGE, 2010). The Brazilian National Institute of Space
Research (Instituto Nacional de Pesquisas Espaciais — INPE), for ex-
ample, is currently mapping the deforestation of the Caatinga eco-
system, the semiarid region of Brazil, and has classified the area into
five general classes: preserved vegetation, degraded vegetation, ex-
posed soil, crops, water, and urban areas. Preliminary results based on
2013-2014 Landsat-8 satellite data indicate that approximately 40% of
the Caatinga is preserved. A different recent estimate of natural vege-
tation remnants indicates contradictory results, one suggest that ap-
proximately 63.2% of the natural vegetation remains in this region
(Beuchle et al., 2015), other suggest that at least 63.3% of the Caatinga
is composed of anthropogenic ecosystems (Silva and Barbosa, 2017).
These estimates, based on classes generalized by indices or vegetation
cover, can mask natural vegetation biodiversity data, since they may
identify areas of monospecific arboreal vegetation, such as plantations
or areas dominated by invasive species, as natural areas.

One strategy to address these methodological limitations is to use
SRS to assess species richness, a challenging and unusual approach
(Nagendra et al., 2010). Several studies that tested remote sensing to

44

predict species richness have obtained positive and promising results
(Fricker et al.,, 2015; Nagendra et al., 2010; Palmer et al., 2002;
Rocchini et al., 2007). These are based on the spectral variability hy-
pothesis (SVH), which suggests a relation between species diversity and
spectral heterogeneity (Palmer et al., 2002; Rocchini et al., 2007).

Different approaches in different environments have shown ad-
vances in alpha-diversity assessment using remote sensing, such as the
successional fields from USA, tropical dry forests from Florida-USA,
Venezuela and India, wetlands from Italy, boreal forests from Finland
and Bornean tropical rainforests from Malaysia and Panama (Aneece
et al., 2017; Feeley et al., 2005; Fricker et al., 2015; Gillespie, 2005;
Nagendra et al., 2010; Parviainen et al., 2009; Rocchini et al., 2007).
However, spectral information may not be crucial in some environ-
ments because the moderate species richness may require spectral in-
formation for accurate species discrimination, or the temporal varia-
tions of spectral properties can be related to differences in phenology
and physiology in seasonal environments (Rocchini et al., 2016). Al-
though spectral information can be a good proxy of diversity estimate,
caution must be taken considering additional multiscale drivers like
climate, soil types, topographic variables, and biotic interactions
(Rocchini et al., 2016).

Therefore, the aim of this study was to test whether spectral vari-
ables can be used as indicators of plant species diversity in the Caatinga,
the largest nucleus of dry forest in South America, where no such
evaluation was performed. The Caatinga region is the richest Seasonally
Dry Tropical Forest and Woodlands area in the New World (Queiroz
et al., 2017). Although Caatinga dry land vegetation is part of a global
biome that has been variously treated as dry forests, its vegetation
structure is extremely variable, with strong floristic links between the
different vegetation types, ranging from open cactus scrub to semi-de-
ciduous forests (Queiroz et al., 2017). For that reason, we questioned:
can any of the spectral variables be used to predict diversity in the
Caatinga? If so, what is the power of this prediction? This type of in-
formation can bring practical applications for actions in a region that
needs urgent measures for conservation and sustainable development
(Tabarelli et al., 2017).
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2. Material and methods
2.1. Study area

This study was conducted in the Caatinga region, an area of ap-
proximately 844,453 km® The region includes the Brazilian states of
Alagoas, northern and central Bahia, Ceara, Pernambuco, Paraiba, Rio
Grande do Norte, southeastern Piaui, Sergipe, and northern Minas
Gerais (IBGE, 2010) (Fig. 1). According to the Képpen-Geiger climate
classification system, updated by Alvares et al. (2013), the Caatinga
region contains areas of tropical climate with dry summers (As) and hot
semi-arid climate in hot steppes at low latitude and altitude (Bsh). The
annual mean temperature is between 24 and 28 °C, with low and irre-
gular rainfall varying between 250 and 1000 mm, as well as water
deficit conditions during most of the year. The vegetation displays a
variety of physiognomic types, from shrubby areas to seasonally dry
forests, consisting mainly of small woody and herbaceous species,
usually with spines and reduced and deciduous leaves, as well as many
succulents and therophitic herbs that efficiently respond to the pre-
cipitation levels (Queiroz et al., 2017).

2.2. Plant diversity data

To obtain plant diversity data (richness and Shannon's index), an
exhaustive search was conducted for phytosociological studies carried
out in the study area, which included researches published between
1989 and 2015. From 32 studies, we filtered 60 of 91 sites with di-
versity information (Fig. 1). We excluded sites with outliers and pro-
blems during the image processing. All 60 sites have species richness
data (n = 60) and 25 have Shannon index data (n = 25). The difference
between the number of samples (n) in the two categories was due to the
smaller number of publications reporting the use of the Shannon's
index. A point vector file with associated species richness and/or
Shannon index value was generated.

2.3. Image acquisition and processing

Thematic Mapper (TM) and Operational Land Imager (OLI) images
from the Landsat 5 and 8 satellites were selected due to their ubiquity,
extensive database (32 years of image acquisition), spectral resolution,
adequate spatial resolution (30m) for environmental analysis
(Townshend et al., 2012), their previous use in several species biodi-
versity modeling studies (Duro et al., 2014; Gillespie, 2005; Nagendra
et al., 2010), and free access.

Fifteen images were obtained from the U.S. Geological Survey
(USGS) Global Visualization Viewer (GloVis). The orbit-point and date
of the images varied according to the sampling date and publication
date. Images captured as near as possible to the sampling date were
selected, considering the limitations imposed by cloud cover and the
satellite's temporal resolution (16 days).

2.3.1. Radiometric calibration

The pixel digital number (DN) of the Landsat 5 TM sensor images
was converted to monochromatic spectral radiance (LA,i - W m-2 sr-1
pum-1) using the equation proposed by Markham and Barker (1987):
Lu=a; + (blzssa] )DN o
where a and b are the minimum and maximum spectral radiances, re-
spectively (W m Zsr ! pm’l); DN is the pixel intensity (integer be-
tween 0 and 255); and i corresponds to Landsat 5 TM bands 1 through
7. The calibration coefficients used were proposed by Chander et al.
(2007, 2009) (Table 1).

2.3.2. Planetary spectral reflectance
Planetary reflectance is given by the ratio between the hemispheric
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Table 1

Description of Landsat 5 TM bands and spectral bands used, minimum (a) and
maximum (b) calibration coefficients, and spectral solar irradiance at top of
atmosphere (ESUNA) (Chander et al., 2007, 2009).

Bands  Spectral Calibration coefficient (W m~2 ym 1) ESUN, (W
bands (um) m~2um~1)
03/01/1984-12/ after 01/01/1992
31/1991
A B a B
BLUE 0.45-0.52 —1.52 169.00 —1.52 193.00 1983
GREEN 0.52-0.60 —2.84 333.00 —2.84 365.00 1796
RED 0.63-0.69 -1.17 264.00 -1.17 264.00 1536
NIR 0.76-0.90 —1.51 221.00 —-1.51 221.00 1031
SWIR1 1.55-1.75 —0.37 30.20 —-0.37 30.20 220
SWIR 2 2.08-2.35 —=0.15 16.50 —-0.15 16.50 83.44

integration of the monochromatic radiance and the monochromatic
solar irradiance incident on a horizontal surface. For the images of the
Landsat 5 TM sensor, the equation used by NASA (1998) was applied:

7. L

P = ESUN;.cos 6. d;

(2)

where L,; is the spectral radiance of each band; ESUN, is the spectral
solar irradiance of each band at the top of the atmosphere (W m ™2
|,|.m’1) (Table 2); 0 is the solar zenith angle; and d, is the inverse of the
square of the relative distance between the Earth and the Sun (Table 2).

In the case of the Landsat 8 OLI sensor images, as the Earth-Sun
distance and ESUN data had already been integrated into the digital
number of each pixel, calculation of the reflectance directly from the
raw image was possible using the multiplicative and additive scaling
factors from Table 2, which were available in the image metadata file.

_ M. DN + A,

Pi = s e 3

M; is the multiplicative conversion factor, and AL is the additive
conversion factor specific to each band, available in the image metadata
file.

2.4. Vegetation index

We explored eight vegetation indices (VI) cited by literature to
evaluate possible association with species diversity variables (Table 3).
Some VI were chosen for their ability to measure spectral variability
and the relation with plant diversity (eg. Feeley et al., 2005; Gillespie,
2005), while others were tested for being Caatinga specific vegetation
indices (eg. Machado, 2014; Ribeiro et al., 2016).

Table 2

Description of Landsat 8 OLI bands and spectral bands, multiplicative factors
(Mp), and additive factors (A;) used to calculate the radiance and spectral re-
flectance for 08/04/2013 and spectral solar irradiance at the top of the atmo-
sphere (ESUN,).

Bands Spectral bands Calibration coefficients ESUNA (W m 2
(um) reflectance um™Y)
My, Ay
BLUE 0.45-0.51 0.00002 -0.1 2067.00
GREEN  0.53-0.59 0.00002 -0.1 1893.00
RED 0.64-0.67 0.00002 -0.1 1603.00
NIR 0.85-0.88 0.00002 -0.1 972.60
SWIR1 1.57-1.65 0.00002 -0.1 245.00
SWIR 2 211-2.29 0.00002 -0.1 79.72
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Table 3
Vegetation indeces used in present manuscript and respective description and model.
Vegetation Index Description Model
Simple Ratio Index (SR) Birth and Mcvey (1968) SR = PNIR
PR
Normalized Difference Vegetation Index (NDVI) Rouse et al. (1974) NDVI = PNIR—PR
PNIR + pp.
Soil-Adjusted Vegetation Index (SAVI) Huete (1988), following Allen et al. (2002) SAVI = (14 LXNIR - R)
(L + pNIR + pR)
Enhanced Vegetation Index (EVI) Huete et al. (1997). EVI=G PNIR — pR

Leaf area index (LAI)

Normalized Difference Moisture Index or Water
Index (NDMI or NDWI)

Difference Vegetation Index (DVI) Richardson and Wiegand (1977)

We used the LAI as proposed by Galvincio et al. (2013) (LAIGalv) and Machado
(2014) (LAIMac) for values adjusted to Caatinga conditions

Hardisky et al. (1983), Hardisky et al.(1983), Gao (1996)

PNIR + C1PR + C2pR + L)
LAlggnw = EXP (1426 + (—0.542/NDVI)
LAlyae = 0.1025-311NDVI

PNIR — PSWIR
NDMI or NDWI = ——————~
PNIR + PSWIR

DVI = pNIR — pR

2.5. Leaf-level spectral reflectance

Due to the variation of floristic and vegetation structure in Caatinga
(Queiroz et al., 2017), we analyzed leaf-level spectral reflectance of
eight species in order to verify if these species can be distinguished by
their particular reflectance in the BLUE, GREEN, RED and NIR spectral
regions. The studied species were Croton sonderianus, Croton con-
duplicatus Kunth, Manihot glaziovii, Jatropha mollissima (Pohl) Bail,
Bauhinia sp., Capparis flexuosa L., Commiphora leptophloeos, Cereus ja-
macaru. These species show taxonomic heterogeneity, some belong to
the same genus, others to different families; different sizes and shapes
of the reflecting units (leaf or stem for cacti), ranging from broad to
small, simple or compound leaves, and different life forms (trees, shrubs
and cacti).

We used a spectrorradiometer (model Fie]dSpec' HandHeld Pro) to
measure the leaf spectral reflectance between 336 and 1045 nm with a
resolution of 1 nm. It was used a 1 and 10° HH FOV lens foreoptic with
Radiometric Calibration. We expected that leaf spectral reflectance
among species may be associated to the best indicators from spectral
variation obtained by SRS data.

2.6. Statistical analysis

The average of spectral variables (individual spectral bands — RED,
GREEN, BLUE, NIR and SWIR and VIs — NDVI, EVI, LAI Mac, LAI Galv,
NDWI, SAVI, SR, and DVI) was obtained from four adjacent pixels to the
each point vector. This average was associated to the 60 sites with re-
spective species richness information and 25 sites with respective
Shannon index value. Pearson correlations were used to measure the
association between these biodiversity measurements and spectral
variables. This method was also applied by Gillespie (2005), Chaves
et al. (2013) and Machado (2014).

We used Principal Components Analyses (PCA) with variance and
covariance matrix to verify possible association between spectral vari-
ables and plant diversity indicators. For this, all the variables ranges
were proportionally standardized in an interval between 0 and 1 and,
consequently, a proportional matrix of variation data was elaborated
for PCA.

In order to obtain an equation for predicting the diversity of plant
species in the Caatinga, we tested linear, quadratic, exponential, and
power regression models between the spectral variable that best cor-
related with diversity variable. The selected model had (1) the highest
probability of association between the variables (p < 0.05); (2) the
best coefficient of determination (R2 closest to 1), corresponding to the
best fit curve running through the points; and (3) the best Akaike's
Information Criterion (AIC) value, as it was the most parsimonious
model that could satisfactorily fit the data (Sobral and Barreto, 2011).

A One Way Variance Analysis (ANOVA) was performed to verify if
there is variation in leaf-level spectral reflectance in the eight species,

using the BLUE, GREEN, RED and NIR regions. Sixty-one reflectance
units for each species were used in this comparison. The p-values from
significance Dunnett's T3 Mean Test was used as post-hoc test for paired
comparison. Next, we used the discriminant function analysis to de-
termine which variables discriminate between the studied species.

3. Results

The species richness varied between 2 and 55 and showed a sig-
nificant and positive correlation with all spectral variables, except
SWIR2. The correlation coefficients of the VIs ranged from 0.343
(Richness — LAI_ GALV) to 0.536 (Richness — DVI). NIR had the highest
correlation coefficient (r = 0.744; p < 0.001) (Table 4).

The Shannon diversity index varied between 0.61 and 3.09 and
showed weaker correlation with spectral variables compared to rich-
ness (Table 4). LAI. MAC, LAI_GALV, SAVI, SR, NDVI, and NDWI pre-
sented a positive and significant correlation to Shannon diversity. The
correlation coefficients ranged from 0.396 (Shannon diversity —
LAI MAC) to 0.466 (Shannon diversity — NDWI). Among individuals
bands BLUE, GREEN, RED, SWIR1, and SWIR2 showed a negative
correlation, being SWIR2 band the most sensitive to Shannon diversity
(r= —0.460, p < 0.05).

The two first principal components accumulate about 87% of the
variability in spectral and diversity variables (PCl =69, 7%,
PC2 = 17y, 19%). The spectral variables demonstrated different per-
formances in PCA and NIR showed similar performance to species
richness when observed the proportional variation of data (Fig. 2).

Table 4

Mean and standard deviation of spectral variable values and the Pearson cor-
relation coefficient between diversity indicator and spectral variables. The
highest value obtained for r is in bold (see abbreviations in the methods sec-
tion).

Spectral Mean Standard deviation = Species Shannon
variable Richness diversity
(N = 60) (N =25)
NDVI 0,279291 0,116004 0.378** 0.407*
EVI 0,19925 0,107655 0.519*** 0.392
LAT_MAC 0,596231 0,669343 0.444*** 0.396*
LAI GALV 0,566785 0,413299 0.343** 0.405*
NDWI -0,0997 0,124302 0.426*** 0.466*
SAVI 0,226867 0,099911 0.458*** 0.397*
SR 1,869449 0,748523 0.428%*** 0.402*
DVI 0,0836 0,045136 0.536*** 0.380
BLUE 0,10587 0,012777 0.290* —0.409*
GREEN 0,101848 0,017495 0.404** -0.316
RED 0,105018 0,028149 0.281" —0.384
NIR 0,185792  0,046225 0.744*** 0.210
SWIR1 0,231352 0,05627 0.344** —0.367
SWIR2 0,182357 0,10236 —0.045 —0.460*

*P < 0.05, **P < 0.01, ***P < 0.001.
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3.6

Component 1

Fig. 2. Principal Components Analyses demonstrating association between spectral variables and species richness (S).

The spectral reflectance in BLUE region showed significant differ-
ences between several species (df = 7; F = 436.19; p < 0.001), but did
not show differences between M. glaziovii and J. mollissima (p > 0.05)
and between M. glaziovii and Bauhinia sp. (p > 0.05), when the leaf-
level reflectance were analyzed. In GREEN region, the differences were
significant among several species (df =7; F = 1877.36; p < 0.001)
except between C. sonderianus and J. mollissima (p > 0.05). In RED
region there were also significant differences in several species (df = 7;
F = 1610.85; p < 0.001), except between M. glaziovii and Bauhinia sp.
(p > 0.05) and between M. glaziovii and C. flexuosa L. (p > 0.05). The
NIR region showed significant differences among all species (df = 7;
F = 26317.55; p < 0.001). So, NIR is the region of the spectrum that
most contributes to distinguish the eight tested Caatinga species.

Four discriminant functions were extracted from the discriminant
analysis, and one of then, mostly defined by the NIR variable, was re-
sponsible for explaining to 98.1% of the variability among the eight
species (Table 5, Fig. 3).

Because the highest correlation coefficients were obtained using
richness, its explanatory power was tested using four regression models
(Table 6). Among the spectral variables, the power regression
(R? = 0.61) and the quadratic regression (R? = 0.56) of the NIR band

Table 5

Standardized coefficients of the variables with discriminant power and per-
centage of variance between the groups explained in the four discriminant
functions to identify the variation among leaf-level reflectance of eight plant
species studied. The highest value obtained for r is in bold.

Variables Coefficients of discriminant functions

1 2 3 4
BLUE —0,473 1588 —0,369 -0,481
GREEN 0,133 1360 0,672 —0,458
RED 0,803 0249 -0,166 0950
NIR 1450 —0,277 —0,070 0044
Eigen value 2100,329 40,162 0,345 0081
Variance explained 98,1 1,9 0 0

47

were the best fitting equations (Table 6, Figs. 4 and 5).
4. Discussion

Our results demonstrate that it is possible to estimate plant species
richness for the Caatinga Forest using the reflectance of the NIR spectral
band. The power regression model approach recommended here de-
monstrate one of the best coefficient of determination (R?), that is, the
best fit association recorded between spectral variable and plant di-
versity index, when compared to other studies in natural environments
(Aneece et al., 2017; Duro et al., 2014; Feeley et al., 2005; Fricker et al.,
2015; Gillespie, 2005; Nagendra et al., 2010; Parviainen et al., 2009;
Rocchini et al., 2016). Among spectral variables tested, the PCA con-
firms that NIR was the variable associated proportional and similarly to
species richness in a matrix of variance and co-variance.

Our results also show the potential of Landsat satellite imagery to
estimate species richness lies more in its near infrared wavelengths than
in the combination of bands used to calculate the vegetation indices.
This result is consistent with that observed in an area of riparian forest
in the Tuscany region of Italy (Rocchini et al., 2007). NIR was also
responsible for explaining better the variation of leaf level reflectance
among eight species that represent a sample of variation in taxonomic,
leaf size, shape, and type, and life forms (trees, shrubs and cacti) of the
Caatinga region.

Many authors have used parameters that are well established in the
literature as a measure of spectral variability, which are based on the
infrared/visible wavelength relation, using various combinations that
form the vegetation indices. Among them, the NDVI has been one of the
most evaluated as a potential indicator of species richness (Duro et al.,
2014; Fairbanks and McGwire, 2004; Gillespie, 2005; Nagendra et al.,
2010). In the present study, NDVI presented one of the lowest corre-
lations with richness values, slightly higher than LAIGalv. This is con-
sistent with the results observed in wetland area in Italy, tropical forest
in Borneo and dry forest in India (Nagendra et al., 2010; Rocchini et al.,
2004), who obtained a weak explanatory potential between NDVI and
species richness (R? < 0.30). From a statistical point of view, these
results might occur because the NDVI, as well as other vegetation
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Fig. 3. Distribution of leaf reflectance data among eight species occurring in the Caatinga region.

indices, reduces the range of values by rescaling the original data,
considerably affecting the pixel value dispersion (Rocchini et al., 2007).
By contrast, the biomass, or amount of GREEN, which was explained by
vegetation indices, is not necessarily associated with species richness
(Weiher, 2003).

In some studies, individual bands correlated more strongly with
diversity measures, a finding similar to our results (Rocchini et al.,
2007; Nagendra et al., 2010; Chawla et al., 2010). Among the spectral
bands analyzed in this study, the near infrared spectral band stands out
due to its high correlation values and explanatory potential for species
richness (r = 0.744, R> = 0.6108, respectively), similarly to what was
observed by Rocchini et al. (2007). Among the results obtained with
individual bands, GREEN presented the second-best result, which was
also found by Rocchini et al. (2007). Similar results were also found for
a tropical dry forest in India, where the GREEN and BLUE bands seemed
to be the most sensitive (Nagendra et al., 2010). A greater sensitivity to
richness is observed in the bands where the highest radiation re-
flectance occurs, in the NIR, where there is a small absorption of the
radiation and considerable internal scattering, and in the GREEN,
where most of the plants are moderately transparent. This contrasts
with what happens with the BLUE, RED, and short-wave infrared re-
gions, where greater radiation absorption takes place.

The high explanatory potential of the near infrared spectral band for
species richness could be due to the interaction of the electromagnetic
radiation in this spectrum range with plant canopies. The occurrence of

60 y =2006.1x>12
R*=0.6108 N=60 ¢ e
50 p
P e
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Fig. 4. Power regression between richness and reflectance of band 4 (NIR),
based on a Landsat image.

the highest radiation reflectance in the near infrared region (Lillesand
et al., 2004; Jensen, 2011) due to internal radiation scattering at leaf
level and the multiple reflection among the various leaf layers at the
canopy level is well documented in the literature. At the leaf level,
different species exhibit differences in mesophyll structure, water
content, and air-water ratio and the variability of photosynthetic pig-
ments, consequently, reflect radiation differently. At the canopy level,

Table 6

Results of the regression models for richness using the spectral variables (VIs and spectral bands). The highest R” value and the AIC lowest value are in bold.
Spectral variable Linear Exponential Power Quadratic

R* AIC R* AIC R? AIC R® AIC

NDVI 0.1425 8555.8 0.053 8018.2 0.018 7930.8 0.236 7625.9
EVI 0.2695 7289.1 0.1567 7291.2 0.1394 7284.7 0.2696 7291.1
LAI MAC 0.1974 8008.1 0.0938 8010.5 0.0424 7988 0.1975 8010
LAI GALV 0.1179 8801.6 0.0357 7945.6 0.0007 9848.3 0.2649 7337.7
NDWI 0.1815 8167.1 0.091 7945.3 - - 0.2254 7731.2
SAVI 0.2094 7889 0.1041 7700.2 0.065 7640.9 0.2403 7582.9
SR 0.1833 8149.6 0.0838 8110.4 0.0621 8073.7 0.1916 8068.5
DVI 0.2878 7106.9 0.1946 7110.2 0.211 7055.9 0.2948 7039.7
BLUE 0.0841 9138.2 0.2096 9139.7 0.2093 9138.9 0.0843 9138.9
GREEN 0.1636 8345.7 0.3069 8352 0.3194 8294.2 0.1779 8205.5
RED 0.0792 9186.9 0.2072 9115.4 0.1831 9082 0.1016 8965.7
NIR 0.5539 4452.7 0.5654 4462.1 0.6108 4310.3 0.5688 4306.5
SWIR1 0.1184 8796.7 0.2308 8800.7 0.2492 8711.2 0.1458 8525
SWIR2 0.002 9956.8 0.0023 9959 0.0124 9979.4 0.0252 9728.1
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Fig. 5. Quadratic regression between richness and reflectance of band 4 (NIR),
based on a Landsat image.

differences in the density and spatial orientation of the plants influence
the reflectance dynamics in response to the variation in lighting and
target geometries (Rocchini et al., 2007; Ponzoni and Shimabukuro,
2010).

According to Ponzoni and Shimabukuro (2010), the higher the
number of layers in a canopy, the greater the reflectance is due to
multiple scattering. This implies that an area with more biodiversity
will have a greater number of layers in its canopy structure and, con-
sequently, a higher reflectance in NIR, which explains the high and
positive correlation coefficient obtained in this study. This multiple
scattering also can be associated to different reflectance from different
taxa, as observed in the eight species evaluated in this study.

The lower correlation obtained between spectral variables and the
Shannon index may seem contradictory to that obtained for richness.
However, statistically, similarly to what occurred with the vegetation
indices, Shannon's index reduces the range of values by rescaling the
original data. From a biological point of view, richness and Shannon's
diversity index are conceptually different: the former corresponds to the
total number of species in a sample unit, and the latter is a function of
the number of species and the equitability of importance values of the
species; that is, it represents the relative proportion of each species,
which indicates whether the different species have similar or divergent
abundances (Valentin, 2012). Still, Aneece et al. (2017) demonstrated
that near infrared spectral could be used to estimate species diversity,
but the relationships depend on the spectral region examined and the
spectral transformation technique used, and we do not evaluate this
here.

As observed in other studies, the results obtained confirm the use-
fulness of the Landsat satellite as a tool for evaluating plant diversity
because the heterogeneity of the landscape in its scale (30 m) correlates
with the scale in which species richness is observed. In addition to being
free, another advantage of using Landsat is its availability of worldwide
data, with information being captured at regular intervals (from 1972
to present), facilitating spatiotemporal surveys that assess biodiversity.
Nagendra et al. (2010) compared high spatial resolution images from
IKONOS with Landsat's medium resolution images and observed cor-
relations between Landsat spectral variability and species diversity.
They argue that the IKONOS data scale is too low (1 m), which makes it
difficult to evaluate diversity (richness). Similar results were obtained
by Rocchini et al. (2007), who attributed Landsat's better performance
in evaluating plant biodiversity to its superior spectral resolution when
compared to Quickbird.

4.1. Implications and future research

In summary, our study demonstrates that it is possible to quantify
species richness in Brazilian semiarid region using satellite images of
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medium spatial resolution. The power or quadratic regression model
approach of NIR is recommended to do this quantification. Therefore,
we provide important information about biodiversity that can be used
in different studies, from ecological modeling for theoretical ap-
proaches to practical applications. For example, the Caatinga region
was recently characterized as a region with low rates of sustainable
development, principally due to low values of green-structure (Silva
et al., 2017). Designing landscapes for biodiversity-based ecosystem
services is a key strategy for planning sustainable and resilient systems
(Landis, 2017) and, therefore, our results present an essential tools to
designing landscapes for biodiversity assessment and conservation
planning.

Future researches about biodiversity and spectral information in
Caatinga are needed. A sampling design to test the relation between
species diversity and the spectral heterogeneity should be evaluated to
verify how spectral variability hypothesis (SVH) (Palmer et al., 2002) is
performed in Caatinga. Our plant diversity data were obtained from an
exhaustive search among phytosociological studies, but it did not allow
to evaluate this relation due to need of standardized spatial replicates.
We verified the association between alpha diversity and spectral vari-
able, but other studies shown association with beta diversity and this
can be evaluated in Brazilian semiarid region. Still, these analyses need
to be conducted at multiple spatial scales using different approaches to
assess the scale most suitable for biodiversity monitoring (Rocchini
et al., 2016).
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