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ABSTRACT. The lima bean (Phaseolus lunatus) has been cultivated in 

Brazil since pre-colonization times and remains an important source of 

food and income for small farmers. Nevertheless, the species has not 

been extensively studied in this country. We assessed the genetic 

diversity of 183 lima bean landraces collected from different regions of 

Brazil, maintained by Embrapa, the Brazilian Government Agricultural 

Research Corporation. Twelve microsatellite markers were used, and 

seven morphological descriptors were applied. The genetic parameters 

suggested high diversity of the Brazilian collection of lima beans, with a 

mean gene diversity of 0.68 and number of alleles varying from 5 to 15 

among sites. Based on a Bayesian model using molecular data, three sub-

populations were identified in the sample: one predominantly from the 

Andean gene pool of the species (large seeds, mean 100-seed weight of 

80g), and two predominantly from the Mesoamerican pool (both groups 

with a mean 100-seed weight of 34g). Another large group was 

composed of accessions classified as potential hybrids among the 

different sub-populations. All the accessions collected in the Krahô 

indigenous reserve were allocated in the Andean sub-population, and 

these indigenous accessions represented most of this Andean group. All 
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the three sub-populations identified included accessions collected from 

far-apart sites in different geographic regions of Brazil. There was 

considerable introgression between the Andean and the Mesoamerican 

gene pools of cultivated P. lunatus. 

 
Key words: Genetic diversity; Lima bean; Phaseolus lunatus; Germplasm; 

Microsatellite; Structure 

INTRODUCTION 
 
The lima bean (Phaseolus lunatus) is an important grain legume and is a source of 

protein and other nutrients in many developing countries, contributing all essential amino acids 

required for human nutrition (Chel-Guerrero et al., 2012). The species is one of the main 

traditional crops in Mexico (Martínez-Castilho et al., 2008), and it is part of the regular diet in 

Africa, where it is cultivated in association with maize, sorghum, sweet potato, coffee, cotton 

and yam (Asante et al., 2008). The crop has considerable importance in Brazil, where it is 

mostly cultivated on small farms. According to Vieira (1992), the lima bean used to be 

cultivated in most of the states of Brazil, in small to large areas and, occasionally, as a cash crop. 

Nowadays, the main growing region in the country is the northeast, where the lima bean 

constitutes an important alternative as a source of food and income (Lopes et al., 2010; Oliveira 

et al., 2004). The lima bean crop is also very important in the context of food security for 

different indigenous Brazilian tribes, such as the Krahôs (Terezinha Dias, Embrapa Recursos 

Genéticos e Biotecnologia, personal communication).  For some of these indigenous 

communities, the grains of this crop represent the main source of protein in periods of scarcity. 

Different studies raise the hypothesis that the species presents two major gene pools: 

one group with small seeds and wild types distributed in Mexico, Central America and the 

eastern part of the Andes (the Mesoamerican gene pool), and the other group with large seeds 

and wild types distributed predominantly in the western part of the Andes, in Ecuador and 

northern Peru (Debouck et al., 1987; Gutiérrez Salgado et al., 1995; Fofana et al., 2001; Motta-

Aldana et al., 2010; Serrano-Serrano et al., 2010). The study by Serrano-Serrano et al. (2010) 

supports the Andean origin of wild lima beans, followed by an early divergence due to 

geographic isolation related to major geographic events, such as the uplift of the Andes and the 

closure of the Isthmus of Panama. The Andean and the Mesoamerican gene pools of the lima 

bean are usually identified based on molecular analysis, both in the wild and in the cultivated 

pools of the species (Gutiérrez Salgado et al., 1995; Lioi et al., 1998; Fofana et al., 2001). This 

division of the species into these two gene pools may present practical impacts for the use of the 

respective genetic resources. In the case of the common bean (P. vulgaris), which presents a 

pattern of evolution and genetic structure similar to the lima bean, the genetic divergence 

between the Andean and Mesoamerican groups has led to reproductive isolation between these 

groups (Gepts and Bliss, 1985). Baudoin (1988) also reports some degree of reproductive 

isolation between these two gene pools of the lima bean. However, the lima bean most probably 

presents a weaker level of differentiation between its Andean and Mesoamerican pools, if 

compared to the common bean, for instance. Both the studies by Lioi et al (1998) and Fofana et 

al. (2001) with P. lunatus reported an intermediary group, which most probably resulted from 

the introgression between the Andean and Mesoamerican lima bean gene pools. In our opinion, 

however, the degree of genetic structure and the levels of introgression between these two gene 

pools in the lima bean crop remain to be further investigated. 
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Phaseolus lunatus diversity has been assessed based on different types of characters, 

such as morphological, biochemical, and molecular (Gutiérrez-Salgado et al., 1995; Zoro Bi et 

al., 2003; Martínez-Castillo et al., 2004; Martínez-Castillo et al., 2006; Martínez-Castillo et al., 

2008; Silva et al., 2017). The species presents high levels of diversity, if compared to other 

predominantly selfing species, such as P. vulgaris, for example (Zoro Bi et al., 2003). Most 

studies of lima bean crop diversity used accessions that were collected from Central America 

and Mexico. To the best of our knowledge, few studies have assessed the diversity of the 

cultivated lima bean using a sample that is broadly geographically represented, and numerous 

accessions from South America (Lioi et al., 1998; Fofana et al., 2001; Silva et al., 2017).  

Although Brazil is not a primary center of diversity for the lima bean, large diversity of 

the species´ cultivated pool is expected in the country, since various types have been cultivated 

in the different regions of the country (Lopes et al., 2010; Silva et al., 2017). Despite its 

importance for Brazil, the species has received attention from the Brazilian scientific community 

in just the last 16 years. Since 2003, the Plant Breeding Program at the Federal University of 

Piauí has carried out multi-disciplinary studies on the lima bean (Santos et al., 2009; Lopes et 

al., 2010); this program aims to obtain short cycle genotypes with a determinate growth habit. A 

few studies have accessed the characterization and use of the species´ genetic resources in Brazil 

(Santos et al., 2002; Guimarães et al., 2007; Alves al., 2008; Silva et al., 2017). Based on a 

multivariate analysis using both quantitative and qualitative morphological traits, Silva et al. 

(2017) concluded that both the Andean and the Mesoamerican lima bean gene pools were 

cultivated in Brazil, with high levels of genetic diversity.   

The Brazilian Agricultural Research Corporation, Embrapa, under the aegis of the 

Brazilian Ministry of Agriculture, Livestock, and Food Supply, holds and conserves a large 

germplasm collection of the species in its cultivated form, in the long term collection (Colbase) 

at Cenargen, the Embrapa Genetic Resources and Biotechnology Center. The accessions stored 

in Colbase were obtained predominantly from the extensive collection expeditions performed in 

different regions of Brazil, since the 60´s and, therefore, represent the different regions where 

the crop was cultivated in the country. Some accessions of this lima bean collection were 

collected by other Brazilian institutions in the 1960s and were deposited in Colbase-Cenargen 

for security purposes, as was the case of the accessions deposited by the Federal University of 

Viçosa. In 2009, Embrapa formalized an Active Genebank of P. lunatus; since then, accessions 

of this important collection have been multiplied, characterized, and made available for 

institutions that request its germplasm. 

We examined the genetic diversity and the structure of the P. lunatus conserved in the 

Embrapa collection. In a previous publication (Silva et al., 2017), we investigated the genetic 

diversity of a lima bean sample from this germplasm collection; however, this was based only on 

morphological characters. In this study we used microsatellite markers and some morphological 

descriptors of the species to access the diversity of the lima bean cultivated in Brazil. 

MATERIAL AND METHODS 

Sampling 
 
We used 192 accessions of P. lunatus in the study (Supplementary 1). Most of these 

accessions are maintained in the Embrapa Active Genebank of P. lunatus, which in Cenargen, 

the Embrapa Genetic Resources and Biotechnology Center, located in Brasília, DF. This active 

gene bank is composed of accessions collected from all the major regions where the crop has 

been cultivated, as a result of the extensive collection expeditions performed by Embrapa and 

http://www.funpecrp.com.br/gmr/articles/year2019/vol18-4/pdf/gmr18441_-_Supplementary1.pdf
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other institutions, such as the Federal University of Viçosa, in the last 60 years. The accessions 

in this study sample were chosen to represent the maximum geographic diversity inside the 

country. Nine other accessions that were collected in different countries were included in the 

study sample. The Federal University of Piauí imported these accessions from the Centro 

Internacional de Agricultura Tropical (CIAT) as promising genotypes for the characteristics of 

determinate growth habit and short cycle. For the germplasm collected in Brazil, in this study we 

used samples that have not been regenerated yet. 

Marker analysis 
 

Genomic DNA was extracted from young leaves, following the cetyltrimethyl-

ammonium bromide (CTAB) method described by Doyle and Doyle (1987), with the adaptation 

of triturating the plant material with Fatstrep (Bio 101 Savant) equipment. Twenty-four 

microsatellite markers were tested, and 12 were used in the genetic analysis (Table 1).  

 
 

Table 1. Microsatellite markers tested and the performance in the Phaseolus lunatus sample. 

 

Marker Motif Type Reference Performance
†
 

AG1 (GA)8GGTA(GA)5GGGGACG(AG)4 (Gaitán-Solís et al., 2002) C 

BM114 (TA)8(GT)10 (Gaitán-Solís et al., 2002) +M 

BM140 (GA)30 (Gaitán-Solís et al., 2002) +P 

BM141 (GA)29 (Gaitán-Solís et al., 2002) +P 

BM146 (CTGTTG)4-(CTG)4-(TTG)3(CTG)3-(CTG)4 (Gaitán-Solís et al., 2002) +P 

BM154 (CT)17 (Gaitán-Solís et al., 2002) +P 

BM155 (CA)8 (Gaitán-Solís et al., 2002) +P 
BM156 (CT)32 (Gaitán-Solís et al., 2002) +P 

BM160 (GA)15(GAA)5 (Gaitán-Solís et al., 2002) +P 

BM164 (GT)9(GA)21 (Gaitán-Solís et al., 2002) +P 

BM170 (CT)5CCTT(CT)12 (Gaitán-Solís et al., 2002) +P 

BM172 (GA)23 (Gaitán-Solís et al., 2002) NA 

BM183 (TC)14 (Gaitán-Solís et al., 2002) +P 

BM189 (CT)13 (Gaitán-Solís et al., 2002) +M 
BM211 (CT)16 (Gaitán-Solís et al., 2002) C 

BM212 (CA)13 (Gaitán-Solís et al., 2002) +P 

BMd-12 (AGC)7 (Blair et al., 2003) +M 

BMd41 (ATT)9 (Blair et al., 2003) NA 

BMd42 (AT)5 (Blair et al., 2003) NA 

BMd53 (GTA)5 (Blair et al., 2003) +M 

GATS 91 (GA)17 (Gaitán-Solís et al. 2002) +P 

PVag003 (AG)8 (Yu et al., 2000) +M 
Pvat001 (TA)22 (Yu et al., 2000) NA 

PVatcc001 (ATCC)3 (AG)2 (TAC)3 (Yu et al., 2000) +M 
†+ = successful amplification; NA = no amplification; C = 50% amplification; P = polymorphic primer; M = 

monomorphic primer. 
 

The markers used in the genetic analysis were distributed in seven linkage groups of the 

common bean (Table 2). All of these markers were developed for the common bean (P. vulgaris) 

(Gaitán-Solís et al., 2002; Yu et al., 2000; Blair et al., 2003), and 15 of those were tested 

previously on the lima bean (Gaitán-Solís, et al., 2002). We used the method of fluorescent 

labeling of microsatellite fragments amplified by PCR described by Schuelke (2000). PCR 

reactions contained approximately 20 ng of genomic DNA, reaction buffer (10mMTris-HCL, pH 

8.4, 50 mMLCl), 250μM dNTP, 3 mM of MgCl2, 0.04 μM forward primer (with the M13 tail), 

0.16 μM reverse primer, 0.16 μM fluorescent dye (with M13 tail) and 0.5 U of TaqDNA 

polymerase (Invitrogen®). PCR cycles were as follows: 5 min at 94ºC; 30 cycles of 45 s at 
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94°C, 45 s at 56°C and 45 s at 72°C; 8 cycles of 45 s at 94°C, 45 s at 53°C and 45 s at 72°C; a 

final extension of 10 min at 72°C. Each PCR reaction contained just one locus of microsatellite, 

and the amplified products were detected in an automatic analyzer of fragments (ABI 377, 

Perkin Almer). The detection and the estimation of fragments sizes were performed with 

GeneScan3.1.2 software (Applied Biosystems). Genotyper 2.5.2 software (Applied Biosystems) 

was used to filter the peaks and to detect the genotypes. Allelic values were adjusted with 

Flexibin software (Amos et al., 2007). 
 

 

Table 2. Genetic parameters estimated for the Phaseolus lunatus sample based on microsatellite markers. 

  

Marker
†
 

Linkage 

group 
SSR sequence Mallelef 

No. of Gene 
Ho PIC 

alleles diversity 

Bm140 4 (GA)30 0.41 12 0.73 0.000 0.69 

Bm141 9 (GA)29 0.39 10 0.74 0.037 0.70 

Bm146 1 
(CTGTTG)4-(CTG)4-

(TTG)3(CTG)3-(CTG)4 
0.37 5 0.74 0.000 0.69 

Bm154 9 (CT)17 0.45 13 0.72 0.054 0.69 

Bm155 5 (CA)8 0.73 5 0.43 0.000 0.39 

Bm156 2 (CT)32 0.44 7 0.72 0.048 0.68 

Bm160 7 (GA)15(GAA)5 0.47 7 0.60 0.058 0.52 
Bm164 2 (GT)9(GA)21 0.50 5 0.63 0.000 0.56 

Bm170 6 (CT)5CCTT(CT)12 0.27 15 0.85 0.024 0.84 

Bm183 7 (TC)14 0.44 5 0.66 0.000 0.59 

Bm212 9 (CA)13 0.53 6 0.58 0.011 0.50 

GATS91 2 (GA)17 0.35 10 0.80 0.065 0.78 

Mean - - 0.45 8.33 0.68 0.025 0.64 
†All the markers were developed by Gaitan-Solis et al. (2002) and were genomic; Mallelef= major allele frequency; Ho= 

observed heterozygosity; PIC= polymorphism information content. 

Analysis of genetic data 
 

Power Marker 3.25 software (Liu and Muse, 2005) was used to calculate the following 

genetic parameters. Major allele frequency, allele number, gene diversity (or expected 

heterozygosity) and observed heterozygosity were calculated according to Weir (1996). The 

polymorphism information content (PIC) calculation followed Botstein et al. (1980).  Because 

all the markers used in this study were developed, originally, for another species (P. vulgaris), 

we did not include the monomorphic markers in the statistical analysis for diversity. The 

Bayesian model of Pritchard et al. (2000), implemented in Structure 2.1 software, was used to 

define the population structure and to assign individuals to sub-populations. The program was 

run with a preset number of populations (K) ranging from 1 to 10, with a running length of 5000 

burn-in and 50,000 Markov Chain Monte Carlo (MCMC) repetitions. Twenty independent 

simulations were performed for each K. The admixture model and the correlated allele 

frequencies were used. Accessions with a sub-population membership coefficient of less than 

0.8 were identified as potential hybrids. The following parameters were calculated to identify the 

number of sub-populations that best reflects the structure in the study sample:  the likelihoods 

(posterior probabilities) of simulations for each preset K, the standard deviations of likelihoods, 

and Delta K (Evanno et al., 2005). Delta K was calculated using the application Structure 

Harvester (Earl and vonHoldt, 2012), available at the following web page: 

http://taylor0.biology.ucla.edu/structureHarvester/. A neighbor joining tree was reconstructed 

using the Shared-allele distance (Chakraborty and Jin, 1993) and Mega software (Tamura et al., 

2007).  
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Morphological characterization 
 

 The following morphological descriptors were applied to the sample: background color 

of seed, seed shape, seed width, seed thickness, seed weight, number of days from emergence to 

flowering and growth habit. Except for pod width and seed thickness (Vilhordo et al., 1996), all 

the above-mentioned morphological descriptors followed IBPGR (1982). For the seed 

descriptors, 10 seeds were evaluated per accession, and means and modes were calculated. 

Growth habit and number of days to flowering were measured in two replicates (two plants) of 

the accessions sown in pots in a completely randomized design in a greenhouse located in 

Embrapa Recursos Genéticos e Biotecnologia, in Brasília (15°43' S and 47°54' W). For the 

classification of seeds´ shape and seeds´ profiles, the J and H indices were used, respectively, 

following Puerta Romero (Vilhordo et al., 1996). The J index is given by the ratio seed 

length/seed width (L/W) and was used to classify the seeds into the following types of shape: 

spherical (J ranging from 1.16 to 1.42), elliptic (J 1.43 to 1.65) and oblong/short reniform (J 1.66 

to 1.85). The H index is given by the ratio seed thickness/seed width (T/W) and was used to 

classify the seeds into the following types of profiles: flattened (H < 0.69), semi-flattened (H 

0.70 to 0.79), and full (H > 0.80). A pachymeter was used to obtain the linear measures of the 

seeds. 

RESULTS AND DISCUSSION 

Polymorphism and microsatellite diversity 
 

From the 24 microsatellite markers tested in our P. lunatus sample, 18 produced peaks 

of expected size and with consistent shapes over the complete evaluated sample (Table 2). Four 

microsatellite loci did not amplify in our lima bean study (BMd41, Pvat001, BMd42 and 

BM172), and two microsatellite loci (G1 and BM211) amplified in just some of the accessions. 

From the 18 microsatellite markers that presented amplification in the complete sample, six were 

monomorphic: BM114, BM189, BMd12, BMd53, PVag003 and PVatcc001. Most of the 

microsatellites tested in our study (17 out of 24) were developed by Gaitán-Solís et al. (2002), 

and the other seven markers were developed by Yu et al. (2000) and Blair et al. (2003). Only the 

markers developed by Gaitán-Solís et al. (2002) worked for our lima bean sample and were 

polymorphic.  Gaintán-Solís et al. (2002) also reported no amplification for locus BM172 on P. 

lunatus and monomorphism for loci BM114 and BM189 when tested in two accessions of the 

lima bean from different origins, Peru and Guatemala.    

The polymorphism information content ranged from 0.39 (BM155) to 0.84 (BM170) 

among these markers (Table 3). The number of alleles ranged from 5 (BM155) to 15 (BM170). 

Major allele frequency was lower than 50% for all but three of the polymorphic markers (Table 

3). The observed heterozygosity in the study sample ranged from 0 to 0.065, with mean 0.025. 

Gene diversity ranged from 0.43 to 0.85 in the different loci evaluated. The mean gene diversity 

in the Brazilian lima bean sample was 0.68.  

Sub-populations (groups) and introgression – “Structure” modeling 
 

Mean likelihoods of the Structure models increased with a higher number of preset K 

(Table 3). However, according to Pritchard et al. (2000) and Evanno et al. (2005), this increase 

in the likelihoods for a higher number of preset populations simulated with Structure modeling 

may constitute a model bias. According to Evanno et al. (2005), the parameters of standard 

deviation of the models and Delta K are more appropriate for investigating the best number of 
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populations that express the structure of the study sample. From all the preset K tested, the 

standard deviations of likelihoods were the lowest at K = 3.  The standard deviations for a 

putative division of the studied sample in just an Andean and a Mesoamerican genepool (K = 2; 

just two sub-populations) was higher than for other preset Ks (K = 3, K = 4, K = 5, K = 6 and K 

= 7). Delta K was the highest at K=3, and the difference from the s highest preset K simulation 

was significant, as it was more than 10 times higher in magnitude. Therefore, our results for both 

Delta K and for standard deviations of likelihoods supported, very strongly, three sub-

populations as the best representation of the structure in the Brazilian sample of lima bean.  

The accessions collected from the Krahô indigenous reserve, most of them with large 

seeds, were allocated on the right-hand side of the Structure bar plot of membership coefficient 

(Figure 1): the groups marked in yellow in the different K simulations. Most of the Krahô 

accessions were allocated in the same group for the different preset Ks (K = 2, 3, 4 and 5), even 

though they presented high diversity in their seed morphology (Moraes et al., 2017). The 

accessions of determinate growth habit, introduced from the CIAT (Centro Internacional de 

Agricultura Tropical), were allocated in the red group for K = 3 and in the blue group for K = 2. 
 

 

Table 3. Mean likelihoods of Pritchard et al.’s (2000) Bayesian models, their standard deviations and Delta 

K for simulations for different Structure simulations within each preset K. 

 

 
LnP (D)† 

 
K Means Standard deviations Delta K 

1 -619.310 001.462.621 - 

2 -5.419.730 021.335.296 010.666.831 

3 -4.875.730 001.427.217 239.749.865 

4 -4.673.905 002.668.229 015.819.480 
5 -4.514.290 007.849.029 005.819.191 

6 -4.400.350 009.456.744 003.470.539 

7 -4.319.230 017.904.986 000.050265 

8 -4.237.210 040.528.936 000.244640 

9 -4.145.275 029.972.441 002.893.491 

10 -4.140.065 204.390.638 - 
†20 iterations for each K level 
 

When Structure was simulated for K = 2 (a putative subdivision of the sample into an 

Andean and a Mesoamerican gene pool), a large number of accessions presented a hybrid 

background (Figure 1), suggesting a high degree of introgression between these two gene pools, 

if these two pools indeed exist in the studied sample. Most of the accessions that presented a 

hybrid background for K = 2 also presented a hybrid background when the program modeled 

three sub-populations in the studied sample. When Structure was run for K = 3, each one of the 

three sub-populations identified presented some degree of introgression with the other two sub-

populations. From the potential hybrids identified at K=3, some presented backgrounds 

estimated from two sub-populations, while other accessions presented backgrounds estimated 

from the three sub-populations. 

Neighbor joining tree  
 

 Most of the accessions classified as group “3” for the Structure modeling considering K 

= 3 (Figure 1), represented in yellow, clustered together in the reconstructed tree (Figure 2). A 

few accessions from this group clustered close to accessions classified as potential hybrids (in 

green). Except for one accession that clustered close to the potential hybrids identified for K = 3, 

all the other accessions of group “2” (group with accessions of determinate growth habit; in red) 
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clustered together in the reconstructed tree. The accessions of group “1” (in blue) formed 

different clusters that were located between groups “2” and “3” in the reconstructed tree. The 

accessions classified as potential hybrids for K = 3 clustered predominantly closer to the 

accessions classified in group “1”. A few accessions classified as potential hybrids clustered 

together with group “2”. 
 

 
Figure 1. Structure bar plot of membership coefficient for all the accessions of the lima bean sample, listed in the same 

order, with K ranging from 2 to 5. “G” are the accessions introduced from CIAT (Centro Internacional de Agricultura 

Tropical). All the accessions inside the rectangular area marked in Group 3 (yellow bars for K = 3) were collected in the 

Krahô indigenous reserve, except for the accessions marked with arrows.   
 

 
Figure 2. Neighbor-joining tree reconstructed for the Phaseolus lunatus sample based on Shared-allele distance and 12 

polymorphic molecular markers, and colored according to sub-populations for Structure K = 3. “G” are the accessions 

introduced from CIAT (Centro Internacional de Agricultura Tropical) “I” are the accessions collected in the Krahô 
indigenous reserve.  
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Morphology and geography of sub-populations (groups) & major gene pools 
 

Because Structure simulations suggested three sub-populations as the best 

representation of the structure and the neighbor joining analysis also supported this result, we 

presented the morphological characteristics for each of the sub-populations estimated for 

Structure K = 3 (Table 4).  

Group (sub-population) “3”: represented in yellow in Figures 1 and 2; formed by 39 

accessions. Most of these accessions (26) were collected in the Krahô indigenous Reserve, 

located in Tocantins State, in the Northern region of Brazil (Supplementary 1; Figure 3). The 

other accessions were collected in three other States located many miles apart (Minas Gerais, 4 

accessions; Paraíba, 2; Piauí, 1), or did not present informed collecting sites (six accessions). 

This group presented the genotypes with the largest seed sizes.  Although the majority of the 

accessions were of large seeds (61%), small seeded genotypes were also allocated in this group 

in a frequency of 13% (Table 4). Different from the other sub-populations, seed shapes in this 

group were predominantly elliptical or spherical, and the large majority of the accessions 

presented a flattened seed profile. In a similar way as in the other groups, the seed colors were 

diverse. This group presented the longest mean flowering cycles, although the diversity was also 

large for this trait. Growth habit was predominantly of type III (indeterminate climber). The 

longer cycles observed suggested that the respective accessions are, most probably, more 

primitive landraces (Baudoin, 1988). Based on the predominance of large seeded accessions 

with flattened profiles, we concluded that the group is composed, predominantly, of the Andean 

gene pool of the species (Debouck et al., 1987; Gutierrez-Salgado et al., 1995). The ranges of 

seed sizes are compatible with the ranges reported by Gutierrez-Salgado et al. (1995) for the 

Andean group of a broad sample of the lima bean collected in Latin America, with the difference 

of smaller seed sizes for the largest seeds in the Brazilian collection. 

 

 
Figure 3. Collecting sites of the Phaseolus lunatus accessions in Brazil, colored according to sub-populations for 

Structure K = 3. 
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Table 4. Morphological characteristics and geographic distribution of the three sub-populations of the 

Phaseolus lunatus sample identified with Structure simulation (K = 3). 

 

Group 100 seed weight Seed size class Seed color Seed shape 
Seed 

profile 

Days to 

flowering 
Growth habit 

Collecting 

State/Country 

1 17.89 - 72.54g Small (84%),  

Brown (43%), 

cream, white, 

black, red, purple 

red 

SPE (90%) FLA (59%) 35 – 153; II (9%) 
Minas Gerais (63%); 

Rio Grande do Sul; 

Blue 

color 
33.69 g large (12%), ELP (10%) SFLA(29%) 103.61 III (91%) Espírito Santo; 

N = 68 
 

medium (4%) 
 

FUL(12%) 
  

Distrito Federal;  

       

Non identified State 

in Brazil; Bahia; 

Goiás; Mato Grosso; 

Pernambuco; 

Alagoas; Sergipe; 

Paraná; 

2 17.52 - 72.00 g Small (89%), 

Cream (32%), 

brown (25%), 

pink, white, red, 

black, yellow 

SPE (86%) FLA(64%) 26 – 130; I (23%) Minas Gerais (34%); 

Non identified State 

in Brazil; Espírito 

Santo; Mato Grosso; 

Paraíba; Bahia; 

Goiás; Philippines; 

Ghana; USA; 

Trinidad and 

Tobago; 

Red color 33.92 g large (7%), ELP (14%) 
SFLA 

(34%) 
78.22 II (16%) 

N = 44 
 

medium (4%) 
 

FUL(2%) 
 

III (61%) 

              

3 31. 45 - 143.19 g Large (61%), 
White (44%), 

brown,  cream, 

black, red, grey, 

green 

ELP (46%) 

SPE (41%) 

OSR(13%) 

FLA(95%) 54 – 150; II (15 %) Tocantins (67%); 

Yellow 

color 
80.16 g medium (26%), SFLA(5%) 119.21 III (85%) 

Non identified State 

in Brazil; 

N = 39 
 

small (13%) 
   

Minas Gerais; Piauí; 

Paraíba;  

4 27.74 - 147.03 g Small (68%), 

White (34%), 

brown, cream, 

black, red 

ELP (37%) FLA (61%) 37 – 151; II (10%) 
Minas Gerais (41%); 

Distrito Federal;  

Hybrid N 

= 41 
53.17 g large (20%), 

SPE(58%)   

OSR (5%) 

SFLA 

(32%) FUL 

(7%) 

99.85 III (90%) 

Non identified State 

in Brazil; São Paulo; 

Piauí; Bahia; 

Alagoas; Espírito 

Santo; 

    medium (12%)           

 

Group (sub-population) “1”: represented in blue; it was the largest sub-population 

identified and the one with the broadest geographic distribution in Brazil (Figure 3), in 11 

different States (Table 4). Most of the accessions were collected from Minas Gerais State 

(Table 4). The group presented large ranges of seed weight (the three classes of seed size in 

the species), and most (84%) were of small sizes according to Castiñeiras et al.’s (1991) 

classification (<46g). The shapes of the seeds were predominantly spherical. Seed profiles 

were predominantly flattened, but the group also presented a large frequency of semi-

flattened seed profiles. The accessions presented different seed colors and were also very 

diverse for their flowering cycle. All the accessions in this group were indeterminate, and 

most of them presented type III (indeterminate climber) growth habit. Based on the higher 

frequency of small seed sizes, we concluded that this group presents, most probably, a 

predominance of the Mesoamerican gene pool of the species (Gutierrez-Salgado et al., 

1995).  

Group (sub-population) “2”: represented in red; it was formed by 44 accessions and 

included accessions that were collected in six States of Brazil (Table 4) from different 

regions (Figure 3), as well as all the imported accessions, introduced from the Philippines, 

the United States of America and Trinidad and Tobago. Although this group also presented 

accessions with the different classes of seed size in the species (Debouck et al., 1989; 

Castiñeiras et al., 1991), the small seeded accessions predominated significantly (89%; 
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Table 4). The majority of the accessions presented spherical seed shapes and the seed 

profiles were predominantly flattened and semi-flattened. Seed colors were also very 

diverse. All the accessions of determinate growth habit (type I) and short cycles to 

flowering were allocated in this group. However, most of the accessions were also of type 

III growth habit. Although this group included the accessions with the shortest cycle to 

flowering, a large diversity for flowering cycle was also identified. Based on seed sizes, we 

concluded that this sub-population also presents a predominance of the Mesoamerican 

genepool (Debouck et al., 1987; Guitierrez-Salgado et al., 1995). 

The accessions classified as potential hybrids according to the Structure simulation 

(K = 3; threshold of 0.80 for membership coefficient) formed a group with 41 accessions 

(group “4” in Table 4). Accessions in this group were collected predominantly in the 

Southeast and Northeast regions of Brazil (Figure 3; Table 4), in seven different States. This 

group also presented a large variation for seed sizes and flowering cycles, and presented an 

intermediary distribution of seed sizes, if compared to the putative Andean group (group 

“3”; predominance of large seeds) and the putative Mesoamerican groups (groups “1” and 

“2”; predominance of small seeds). In a similar way to the putative Andean group (“3”), this 

group also presented some accessions of large seed sizes (e.g., 147 g/100 seeds) and a 

predominance of accessions with flattened seed profile. 

DISCUSSION 
 

The microsatellite markers developed by Gaitán-Solís et al. (2002) for P. vulgaris 

were successfully used in P. lunatus. To the best of our knowledge, no microsatellite 

markers have so far been developed specifically for lima beans. Considering the importance 

of the lima bean crop for food security in different regions of the world, one can presume 

that there is demand for research in the field of molecular markers for the P. lunatus 

species.  

The estimated genetic parameters in the present study suggested the high diversity 

of the Brazilian collection of lima beans, when compared to other collections of the species. 

Our estimations of mean gene diversity (0.68) and the range for number of alleles among 

sites (5 to 15) were similar to the ones obtained by Martínez-Castillo et al. (2006) for wild 

populations of the species (0.69 of mean gene diversity; 4 to 16 alleles; 8 microsatellite 

loci). Gene diversity of the studied sample was also high if compared to other studies that 

accessed the domesticated pool of the lima bean: ranges from 0.119 to 0.28 for Maquet et 

al. (1997), Castiñeiras et al. (2007), and Martínez-Castillo et al. (2008), using different 

types of markers, though. Our results for observed heterozygosity in the studied sample - 

ranges of 0 to 0.065, mean of 0.025 - were consistent with the predominantly selfing 

behavior of the species and with previous studies (Ouédraogo and Baudoin, 2002; Zoro Bi 

et al., 2003).   

Based on the Structure modeling parameters (Delta K and standard deviations of 

likelihoods for different simulations) we concluded that the Brazilian collection of lima 

bean was composed of three sub-populations (or groups). This conclusion was also 

supported by the neighbor joining clustering analysis.  

Integrating the morphological data in our analysis, in the present study we 

concluded that one of the sub-populations identified was predominantly composed of the 

Andean genepool of the species, while the two other sub-populations presented a 
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predominance of the Mesoamerican pool. These results were in accordance with Serrano-

Serrano et al. (2010), Andueza-Noh et al. (2013) and Ruiz-Gil et al. (2016), who also 

reported one Andean and two Mesoamerican groups in broad lima bean samples (wild and 

domesticated accessions), based on chloroplast DNA sequences. In a previous study that we 

carried out with part of the same sample (without the 26 accessions collected in the Krahô 

indigenous reserve) and based just on morphological traits (Silva et al., 2017), we also 

identified three groups in the lima bean cultivated in Brazil. However, we suspected that 

one group presented the Mesoamerican genepool, another group presented the Andean pool 

and the third group presented intermediate characteristics between these two gene pools 

(Silva et al., 2017). With the inclusion of the molecular analysis, we hope that the present 

study has brought a more reliable view of the organization of the diversity in the Brazilian 

lima bean collection. 

We confirmed that both the Andean and the Mesoamerican gene pools of the lima 

bean are cultivated in Brazil. Most of the Brazilian lima bean samples grouped in sub-

populations predominantly composed of the Mesoamerican gene pool (58%); around one 

fifth of the sample grouped in the sub-population with a predominance of the Andean gene 

pool; and the other fifth was classified as potential hybrids among the different sub-

populations. As most of the accessions allocated in the Andean group had only recently 

been introduced in the germplasm collection of Embrapa (the 26 collected in the Krahô 

indigenous reserve, in 2010), we concluded that the Andean background of the lima bean 

was even less frequent in the previous germplasm collection of Embrapa.  

All the three sub-populations identified in the Brazilian sample (one Andean and 

two Mesoamerican), as well as the hybrid group, presented accessions collected in far-apart 

sites in Brazil, in the different geographic regions (Southeast, Northeast and Midwest 

regions). One of the Mesoamerican sub-populations, however, presented a wider geographic 

distribution in the country, with accessions also collected in the South region.  All the lima 

bean accessions collected in the Krahô indigenous reserve were allocated in the Andean 

sub-population, and always together and in the same sub-populations in the different 

Structure simulations. An Andean predominance in a Brazilian sample could be expected in 

pre-colonization cultures due to geography, as Brazil is closer to the region where the 

Andean lima bean was domesticated than it is to the region where the Mesoamerican pool 

was domesticated. The first records of contacts between the Krahô indigenous people and 

the European colonizers dates from the beginning of the nineteenth century, in Maranhão 

State (Melatti, 1972; 1978), located north-east of the region where they live nowadays 

(Tocantins State). According to Melatti (1972; 1978) this indigenous tribe migrated from 

Maranhão to Tocantins State due to conflicts and pressures for land. Most probably, these 

lima bean types reached this indigenous people through the trade routes and migrations 

during pre-colonization times.  

An important aspect observed in our study was the strong introgression between the 

Mesoamerican and the Andean gene pools in lima beans cultivated in Brazil. Because one 

of us studied the diversity of P. vulgaris in Brazil using a similar methodology (Burle et al., 

2010), and considering that both Phaseolus species (P. lunatus and P. vulgaris) present 

Andean and Mesoamerican gene pools, we were able to compare aspects of diversity and 

introgression between the Brazilian domesticated pools of these Phaseolus species. We 

concluded that the introgression between the Andean and the Mesoamerican gene pools 

cultivated in Brazil was larger in the P. lunatus species (present study) than in P.s vulgaris 
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(Burle et al. 2010). In our study the simulations of the Structure modeling for two sub-

populations (putatively, Andean and Mesoamerican pools) resulted in the largest standard 

deviations and in low values of Delta K, and a large number of potential hybrids between 

these groups were identified. However, in the case of P. vulgaris, the common bean (Burle 

et al. 2010), the best performance of the Structure modeling was obtained when two sub-

populations were simulated and only a single potential hybrid between these two sub-

populations (gene pools) was identified. In addition, while in the present study some 

introgression was observed among sub-populations of different gene pools (Andean and 

Mesoamerican) for the different Structure simulations, in the case of the Brazilian common 

bean, the introgression was observed only among the different Mesoamerican groups, and 

the single Andean group was always maintained separate in the different Structure 

simulations (K ranging from 2 to 10) (Burle et al., 2010). The strong introgression among 

the Andean and the Mesoamercian gene pools observed in our study was also in accordance 

with the high morphological variability observed within groups in our previous study, 

conducted with part of the same Brazilian lima bean sample and based on a multivariate 

analysis of both quantitative and qualitative morphological descriptors (Silva et al., 2017). 

As we stated previously (Silva et al 2017), and according to Fofana et al. (1997), lima bean 

landraces may be more prone to exchanging genes between the Andean and Mesoamerican 

gene pools through cross-hybridization than the wild accessions.  

This study provided a first glance at the organization of the diversity of the lima 

bean cultivated in Brazil, based on molecular data. The large genetic diversity observed in 

this study (based on the estimated genetic parameters), and the presence of an Andean and 

two Mesoamerican gene pools, indicates that Brazil is a sary center of diversity of the lima 

bean. We expect that subsequent studies can improve the knowledge related to this 

understudied species. The germplasm collection of lima bean conserved in Embrapa is 

available for exchange upon request (http://alelo.cenargen.embrapa.br/), and we expect that 

this study will facilitate the management and use of this important germplasm collection. 
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