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ABSTRACT. The Brazilian Association of Simmental and Simbrasil 
Cattle Farmers provided 29,510 records from 10,659 Simmental beef 
cattle; these were used to estimate (co)variance components and genetic 
parameters for weights in the growth trajectory, based on multi-trait (MTM) 
and random regression models (RRM). The (co)variance components and 
genetic parameters were estimated by restricted maximum likelihood. 
In the MTM analysis, the likelihood ratio test was used to determine 
the significance of random effects included in the model and to define 
the most appropriate model. All random effects were significant and 
included in the final model. In the RRM analysis, different adjustments 
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of polynomial orders were compared for 5 different criteria to choose 
the best fit model. An RRM of third order for the direct additive genetic, 
direct permanent environmental, maternal additive genetic, and maternal 
permanent environment effects was sufficient to model variance structures 
in the growth trajectory of the animals. The (co)variance components 
were generally similar in MTM and RRM. Direct heritabilities of MTM 
were slightly lower than RRM and varied from 0.04 to 0.42 and 0.16 to 
0.45, respectively. Additive direct correlations were mostly positive and of 
high magnitude, being highest at closest ages. Considering the results and 
that pre-adjustment of the weights to standard ages is not required, RRM 
is recommended for genetic evaluation of Simmental beef cattle in Brazil.

Key words: Body weight; (Co)variance components; Heritability;
Growth trajectory 

INTRODUCTION

The genetic evaluation of beef cattle in Brazil has been performed using animal models 
by mixed model methodology, which routinely uses multi-trait models (MTM) to predict 
breeding values of animals (Marques et al., 1999, 2001; Nobre et al., 2003). Random regression 
models (RRM) (Henderson Jr., 1982; Laird and Ware, 1982) are an alternative to longitudinal 
data analysis (Dias et al., 2006; Albuquerque and El Faro, 2008; Sánchez et al., 2008).

In the MTM, animals are evaluated at different ages for weight along the growth 
curve, due to the collection of the records of weights at different ages. Thus, in most cases, 
the records of weights are taken at specific intervals and pre-adjusted for standard ages, and 
those that are outside the intervals are disregarded. The use of adjusted weights to standard 
ages or the elimination of those that are outside the pre-determined age intervals can lower the 
accuracy of predicted breeding values of animals (Meyer, 2004).

In RRM, the models used in genetic evaluation of animals involve continuous func-
tions to describe both fixed and random effects. The breeding values are predicted by continu-
ous functions of deviations from each animal (taken as random) in relation to average curve 
(taken as fixed). The application of RRM allows the utilization of all available records, so the 
pre-adjustment of the weights to the standard ages is not necessary.

A major criticism of RRM is that in the extremes of the age range or when the data are 
insufficient, the estimated parameters may not be accurate (Meyer, 1999). This fact is com-
mon in beef cattle, since the data collection is sequential and because observations related to 
advanced ages of animals are scarce, resulting in less accurate parameter estimates for these 
ages. One way to evaluate the quality of the parameters of RRM is to compare their estimates 
with those obtained from the MTM. Although estimates of MTM could be bias or less accurate 
in relation to the subjacent model due to pre-adjustments to standard ages, they tend to be less 
affected by extreme trajectory conditions.

Genetic evaluations in beef cattle of the Simmental breed in Brazil have been con-
ducted in MTM, providing estimates in specific ages, comprising birth, weaning, yearling, 
and final weights. However, nowadays, it is possible to estimate (co)variance components and 
genetic parameters using RRM, due to the development of algorithms and software able to 
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process genetic analysis of longitudinal data.
Considering these facts, the aims of this study were as follows: to estimate orders 

of fixed regression curve and random effects of (co)variance functions in the description of 
the growth trajectory, using RRM fitted by Legendre polynomials; to estimate (co)variance 
components and genetic parameters for weights along the growth curve of beef cattle of the 
Simmental breed in Brazil using MTM and RRM; to compare the estimates of (co)variance 
components and genetic parameters obtained in both models to determine their suitability in 
the utilization of RRM to describe the growth trajectory of animals.

MATERIAL AND METHODS

The database analyzed in this study referred to body weights of Simmental cattle from 
485 farms provided by the Brazilian Association of Simmental and Simbrasil Cattle Farmers 
(ABCRSS - Associação Brasileira de Criadores das Raças Simental e Simbrasil) located in the 
city of Cachoeiro de Itapemirim, State of Espírito Santo, Brazil. The weight records used were 
from the 60th to the 819th days of age from animals born between 1974 and 2006.

Two data files were prepared for analysis: one was used in the analysis with MTM and 
two-trait analysis, and the other was used in the analysis with RRM. Both files were composed 
of the same animals. The animals from the reproductive technique of embryo transfer, and the 
calves from dams whose ages at birth were less than 700 days and more than 2340 days were 
excluded from the analysis, to enable the study of maternal effects.

In both analyses, the contemporary group defined by animals of the same sex, year, 
season (1 = January to March, 2 = April to June, 3 = July to September, 4 = October to Decem-
ber) and farm of birth was as the fixed effect while age classes (in days) of the cows at calving 
(class 1: from 700 to 1109; class 2: from 1110 to 1519; class 3: from 1520 to 1919, class 4: 
from 1920 to 2340) were considered as covariate in linear and quadratic effect. Contemporary 
groups with less than 3 observations were excluded from the analysis.

The data file for MTM analysis consisted of adjusted weights for ages at 100 (W100), 205 
(W205), 365 (W365), 450 (W450), 550 (W550), and 730 (W730) days. Therefore, for adjustments 
of W100, W205, W365, W450, W550, and W730, the weights used were between 60 and 149, 150 
and 299, 300 and 419, 420 and 499, 500 and 619, 620 and 819 days of age, respectively.

The weights were adjusted by the formula:

(Equation 1)SWi = Wj + [(Wi - Wj) / (Di)] (Ai),

where SWi is the standard weight for age i; Wi is the observed weight close to the standard 
age Ai; Wj is the previous weight observed at the weight Wi; Ai is the standard age, i = 1 (100 
days), ..., 6 (730 days); Di is the age (in days) of observation Wi.

Records of weights outside the intervals given by the average of the contemporary 
group were excluded - more or less 3 standard deviations. After the restrictions, MTM con-
sisted of 29,510 records of 10,659 animals, calves of 1289 sires, and 7332 dams. Descriptive 
statistics of the data files for multi-trait analysis is demonstrated in Table 1.

The data file for the random regression analysis was composed of the same weight re-
cords of the animals used in the multi-trait analysis, but not adjusted. Tables 2 and 3 present, 
respectively, the descriptive statistics and file structure in relation to the number of records per ani-
mal. The number of records and the average body weight for each age are presented in Figure 1.
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Weight N Sire Dams CG Mean (kg) SD (kg) CV (%) Min (kg) Max (kg)

W100 6236   975 4606 1192   130.76   40.26 30.79     49.10   319.55
W205 7938 1119 5740 1389   222.56   60.38 27.13     88.84   446.72
W365 6070   961 4504 1208   338.47   83.77 24.75   156.63   639.57
W450 3666   738 3458   960 380.5   90.34 23.74   177.26   678.12
W550 3468   693 2790   902 441.1 104.51 23.69 196.5   793.17
W730 2132   505 1815   636   562.72 141.59 25.16   238.05 1108.52

Table 1. Description of data for pre-adjusted weights at 100 (W100), 205 (W205), 365 (W365), 450 (W450), 
550 (W550), and 730 (W730) days old of the data file for analysis via multi-trait models.

N = number of observations; CG = contemporary groups; SD = standard deviation; CV = coefficient of variation; 
Min = minimum value; Max = maximum value.

Age (days) N Mean (kg) SD (kg) CV (%) Min (kg) Max (kg)

60-149 6236 129.73   29.89 23.04     63.57 218.54
150-299 7938 220.20   49.45 22.45   106.33 352.85
300-419 6070 331.93   77.03 23.20   166.80 550.49
420-499 3666 385.17   89.39 23.21   183.96 641.73
500-619 3468 438.03 100.26 22.89 210.5 758.35
620-811 2132 530.44 125.09 23.58   250.93 955.15 

Table 2. Description of data for weights along the growth curve of the data file for analysis via random 
regression models.

For abbreviations, see legend to Table 1.

Analysis of data Number of animals Percentage

Total 10,659 100.00
Animals with 1 record   2,915   27.35
Animals with 2 records   2,401   22.53
Animals with 3 records   1,938   18.18
Animals with 4 records   1,624   15.23
Animals with 5 records   1,203   11.29
Animals with 6 records               578     5.42

Table 3. Structure of file for random regression analysis with relation to the number of records per animal.

Figure 1. Number of records (gray bars) and average body weight (black triangles) for each age in the data file 
random regression model.
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The organization and consistency analysis of the data files were performed using the 
SAS software (SAS, 2004); the estimation of (co)variance and genetic parameters for both 
analyses with MTM and RRM were performed by restricted maximum likelihood developed 
by Patterson and Thompson (1971), and obtained by the utilization of the Wombat software, 
developed by Meyer (2007).

The pedigree of animals was renumbered using the Renped software, developed by 
Silva (2011). The numerator relationship matrix used in both multi-trait and random regres-
sion analysis contained 41,904 animals.

MTM

First, single-trait analysis was performed for the 6 traits, using 3 different models, 
which differed in random effects, from the most complete (direct additive genetic effect, ma-
ternal additive genetic, and maternal permanent environmental) to the reduced model (direct 
additive genetic effect). With type 1 error probabilities of 1 and 5%, the likelihood ratio test 
(LRT) was used to determine the significance of the random effects in the model and define 
the most suitable models for two-trait analysis.

Afterwards, N = p (p-1) / 2 two-trait analysis was carried out where: n is the number 
of analyses performed and p is the number of traits, totaling 15 combinations (W100-W205, 
W100-W365, W100-W450, W100-W550, W100-W730, W205-W365, W205-W450, W205-
W550, W205-W730, W365-W450, W365-W550, W365-W730, W450-W550, W450-W730, 
W550-W730) in the estimation of (co)variance components and genetic parameters.

The animal model was described in matrix notation as follows:

(Equation 2)y = Xβ + Z1d + Z2m + Z3mp + e

where y is a vector of observations; β is a vector of fixed effects; d is a vector of random direct 
additive genetic effects; m is a vector of random maternal additive genetic effects; mp is a vec-
tor of random maternal permanent environmental effects; X is an incidence matrix for fixed 
effects; Z1, Z2 and Z3 are incidence matrices, respectively, to the random effects, direct additive 
genetic, maternal additive genetic, and maternal permanent environmental; and e is a vector 
of random residual effects.

The following assumptions were made:

where Gd  is the matrix of (co)variances of random direct additive genetic effects; Gm is the 
matrix of (co)variances of random maternal additive genetic effects; Q is the matrix of (co)
variances of random maternal permanent environmental effects; R is the matrix of (co)vari-
ances of residual effects; A is the numerator relationship matrix between the individuals; Iv is 
an identity matrix with order being the number of mothers; In in an identity matrix with order 
being the number of observations; and  is the direct product operator.
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(Equation 4)

RRM

The RRM can be studied by 2 groups of regression weights, according to the mea-
sured ages. The first relates to the fixed regression for the individuals belonging to the same 
class of fixed effects, and the second is the random one that describes the deviations of each 
individual in relation to the fixed regression.

The fixed and random regressions were represented by continuous functions, and a 
RR was adjusted for random effects, direct additive genetic, maternal additive genetic, ma-
ternal permanent environmental, and direct permanent environmental, where covariates were 
described by Legendre polynomials.

The tested fixed regressions were of the order 3, 4 or 5, and the choice was based 
on the determination coefficient R2. For the direct additive genetic effect, quadratic, cubic, 
quartic, and quintic polynomials were used, i.e., kd = 3, 4, 5 and 6, respectively, where k refers 
to the order of covariance function. The direct permanent environmental effect was modeled 
considering polynomials of the second, third, fourth, and fifth degrees, i.e., kp = 3, 4, 5 and 6, 
respectively. Linear, quadratic, and cubic polynomials were used for the maternal additive ge-
netic and of maternal permanent environmental effects, i.e., km = kmp = 2, 3 and 4, respectively, 
where, kd, kp, km, and kmp are the orders of the covariance function, respectively, for the direct 
additive genetic, direct permanent environmental, maternal additive genetic, and maternal per-
manent environmental effects that, in general, were chosen based on orders commonly tested 
for beef cattle in the literature (Boligon et al., 2010; Baldi et al., 2010a).

The structure of residual variances was modeled considering 1 class (homogeneous) 
to 6 classes of heterogeneity. The age classes used were: CL1, for homogeneous; CL2, 60-149 
and 150-819 days; CL3, 60-149, 150-299, and 300-819 days; CL4, 60-149, 150-299, 300-499, 
and 500-819 days; CL5, 60-149, 150-299, 300-419, 420-499, and 500-819 days; CL6, 60-149, 
150-299, 300-419, 420-499, 500-649, and 650-819 days. Here, CLm is the modeling of het-
erogeneity of variance, where m represents the number of classes.

The models with different orders of adjustments for the polynomials were compared 
by the criterion maximum of the logarithm of the likelihood function (lnL), Akaike’s informa-
tion (AIC), Schwarz’s Bayesian information (BIC), condition number (CN), which consists 
in the ratio of the highest to the smallest eigenvalue of the correlation matrix and for the LRT.

The statistics lnL, AIC, and BIC were obtained using the Wombat software (Meyer, 
2007). AIC and BIC impose penalties in accordance with the number of parameters to be es-
timated and are defined as follows:

(Equation 3)AIC = -2lnL+ 2 p,

where -2lnL is the deviance of the model, p is the number of estimated parameters, N is the 
number of observations, r(X) the position of the incidence matrix of the model fixed effects, 
and lnL is the maximum of the logarithm of the likelihood function.

The LRT statistic was calculated by the following formula: LRTi j = 2lnLi - 2lnLj, 
where lnLi is the maximum for the likelihood function for the complete model i, and lnLj the 
maximum of likelihood function for the reduced model j. The LRT estimate was compared 
with the value of the chi-square (χ2) tabulated, with v degrees of freedom, and significance 

BIC = -2lnL + p ln [N - r(X)]
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level of 1%, where v is the difference between the numbers of estimated parameters by the 
complete and reduced models (nested). The conclusions were drawn as follows: if LRT > 
χ2

tab(n;0.01) the test is significant and the complete model provides better adjustment in relation to 
the reduced model. The null hypothesis tested was that the complete and reduced models did 
not differ from each other.

In matrix notation, the model with its respective assumptions can be described as:

y = Xβ + Φ1d + Φ2m + Φ3mp + Φ4p + e (Equation 5)

As the vector y is composed sequentially by age within the individual, it is possible to 
get the following structure of means and variances:

where y is the vector of observations; β is the vector of fixed effects that contains the coef-
ficients of fixed regression; d is the vector of random regression additive genetic direct coef-
ficients; m is the vector of random regression additive genetic maternal coefficients; mp is the 
vector of random regression of maternal permanent environmental coefficients; p is the vector 
of random regression of permanent environmental direct coefficients; e is the random residual 
vector; X, Φd, Φm, Φmp, and Φp are the incidence matrices for the polynomial coefficients of the 
fixed effects, direct additive genetic, maternal additive genetic, maternal permanent environ-
mental, and direct permanent environmental, respectively; Kd, Km, Kmp, and Kp are matrices of 
(co)variances among the direct additive genetic random regression coefficients, maternal addi-
tive genetic, maternal permanent environmental, and direct permanent environmental, respec-
tively; A is the numerator relationship matrix; INd is the identity matrix of dimension d (number 
of animals with record); INm is the identity matrix of dimension m (number of dams with calves 
with record); R is the diagonal matrix of residual variances; and  is the direct product operator.

The covariance between direct additive genetic effects and the maternal additive ge-
netic effects for both MTM and RRM was assumed to be equal to zero.

To enable the comparison of the residual variances obtained in MTM and RRM, the 
residual variance used in RRM was a composed residual variance, calculated by the sum of 
the variance of permanent environmental direct and the residual (R = ΦpKpΦpꞌ + Iσ2

e), thus 
equivalent to the residual variance obtained by MTM. This calculation is important because it 
is equivalent, in an RRM, to the residual variance estimated for MTM (Menezes, 2010).

RESULTS AND DISCUSSION

According to the LRT used in single-trait analysis, the difference between the com-
plete model (M1) and the model containing the direct additive genetic and maternal additive 
genetic (M2) effects was significant at all ages, excepting W550 (Table 4). These results in-
dicated that the influence of maternal effects continues even after the lactation stage of the 
animals, and that the inclusion of these effects in the model is needed. Sarmento et al. (2003) 
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stated that the maternal environment can influence the calf in pre- and postnatal care, where 
even the effect can be changed with the management of the animals. Meyer et al. (1993), 
working with Hereford and Wokalup cattle, reported that maternal effects influenced from 
birth to 600 days of age.

Change of estimate -2lnL1

Weights M1-M2 M1-M3 M2-M3

W100   7.25** 16.70**   9.45**
W205 4.66* 19.91** 15.25**
W365 6.31* 8.37*  2.07 ns

W450   8.92** 5.93ns  3.02 ns

W550 1.97ns 2.16ns  0.19 ns

W730 5.99* 0.01ns  0.01ns 

Table 4. Changes in the deviance estimates (-2lnL) and its significance caused by the use of different models 
(M) for the analysis of the weights at 100, 205, 365, 450, 550, and 730 days of age.

M1 = direct additive genetic effect, maternal additive genetic effect, and maternal permanent environmental effect; 
M2 = direct additive genetic effect and maternal additive genetic effect; M3 = direct additive genetic effect; **P < 
0.01; *P < 0.05; ns = not significant. 1L = likelihood function.

The same results were not observed in comparison between M1 and the reduced 
model (M3) and between M2 and M3, where there were significant differences for ages 
W100, W205, and W365 in M1 and M3, and for W100 and W205 in M2 and M3. The results 
indicated that maternal effects affect animals mainly in the period from birth to weaning. 
Meyer (2003), working with Angus females using RRM, obtained estimates of maternal 
heritability increasing from birth to approximately 200 days of age and gradually decreasing 
to zero close to 600 days of age.

Several studies in beef cattle have demonstrated the importance of including maternal 
effects in the analysis (Meyer et al., 1993; Baldi et al., 2010b; Nobre et al., 2009; Menezes, 
2010). Meyer (1997) reported that the models that rule out maternal effects lead to overesti-
mates of direct heritability. Thus, it would be recommended to consider the maternal effects 
on the genetic evaluation model to obtain more accurate genetic parameters for weights after 
weaning in MTM.

The choice of the order of the polynomial of the fixed regression curve to model the 
trajectory of growth using RRM was made   based on the coefficient of determination. The in-
crease in order of the polynomial of the fixed curve did not result in significant improvement 
of the coefficient of determination, and therefore, a third-order polynomial was chosen to 
model the animal growth curve (Figure 2).

The maximum lnL values, in general, were lower in less parameterized models; how-
ever, some models with more parameters displayed lower values   of lnL. Regarding AIC and 
BIC criteria, there was a tendency of lower values   in models more parameterized, but the 
increase in the number of parameters did not always produce more appropriate models. CN 
showed, in general, higher values   with increase in order of polynomials, i.e., multicollinearity 
increased with order of the polynomial (Table 5).

Two models were more fitted according to the statistical criteria adopted. The model 
Leg3633_1, with 40 parameters, was the most appropriate according to the lnL criterion and 
LRT, which allowed determining the significant difference with regard to the quantity of pa-
rameters. Therefore, the test indicated that the most parameterized model, Leg3633_1, with 40 
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parameters, differed statistically (P < 0.01) from the other, i.e., the complete model was more 
suitable in relation to the reduced model. However, the best model for the other criteria (AIC, 
BIC, and CN) was Leg3333_1, with 25 parameters, which showed lower values with these 
criteria. Jamrozik and Schaeffer (2002), in evaluating different RRM to estimate covariance 
functions for test-day milk production affirmed that different criteria classify the models dif-
ferently and that it is still unclear which statistical criterion is more suitable.

Model kd kp km kmp Np lnL LRT AIC BIC CN

Leg3333_1 3 3 3 3 25 -122,368.328 1,148.70** -122,393.328 -122,496.294 111.37
Leg4333_1 4 3 3 3 29 -122,104.783    621.61** -122,133.783 -122,253.224 497.04
Leg5333_1 5 3 3 3 34 -121,854.781    121.61** -121,888.781 -122,028.816 738.64
Leg3433_1 3 4 3 3 29 -122,135.619    683.28** -122,164.619 -122,284.061 201.17
Leg3533_1 3 5 3 3 34 -121,978.672    369.39** -122,012.672 -122,152.707 216.70
Leg3633_1a 3 6 3 3 40 -121,793.978 - -121,833.978 -121,998.725 301.45
Leg3323_1 3 3 2 3 22 -122,327.717 1,067.48** -122,349.717 -122,440.328 202.27
Leg3343_1 3 3 4 3 29 -122,211.915    835.87** -122,240.915 -122,360.357 188.20
Leg3332_1 3 3 3 2 22 -122,328.092 1,068.23** -122,350.092 -122,440.702 201.41
Leg3342_1 3 3 4 2 26 -122,229.141    870.33** -122,255.141 -122,362.227 173.61
Leg3344_1 3 3 4 4 33 -122,275.415      962.874** -122,308.415 -122,444.331 163.88
Leg3333_1 3 3 3 3 25 -122,368.328    595.09** -122,393.328 -122,496.294 111.37
Leg3333_2 3 3 3 3 26 -122,310.915    480.26** -122,336.915 -122,444.001   61.68
Leg3333_3 3 3 3 3 27 -122,305.438    469.31** -122,332.438 -122,443.642   63.93
Leg3333_4 3 3 3 3 28 -122,337.228    532.88** -122,365.228 -122,480.551   64.86
Leg3333_5 3 3 3 3 29 -122,256.278    370.99** -122,285.278 -122,404.720   65.74
Leg3333_6b 3 3 3 3 30 -122,070.784 - -122,100.784 -122,224.344   64.83

Table 5. Order of polynomial.

Legkdkpkmkmp_r: order of covariance; kd = direct additive genetic effects; kp = direct permanent environmental; km = 
maternal additive genetic; kmp = maternal permanent environmental; r = structure of residual variances; Np = number 
of parameters; lnL = maximum log-likelihood function; LRT = likelihood ratio test; AIC = Akaike’s information 
criterion; BIC = Schwarz’s Bayesian information criterion, CN = number condition criterion. Values   in bold 
indicate the best model based on lnL, AIC, BIC, and CN. aComplete homogeneous model or more parameterized. 
bComplete heterogeneous model or more parameterized. **Significant at 1% probability.

Figure 2. Behavior of the fixed regression curve in the trajectory of growth in different orders of polynomials.
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Legarra et al. (2004) stated that more parsimonious models are preferred because of 
the smaller computational demands and susceptibility to numerical errors. Thus, the model 
Leg3333_1, with 25 parameters, was chosen for modeling the trajectory of growth of animals 
and to obtain the (co)variance components and genetic parameters, since it is more parsimoni-
ous and yields estimates closer to those found in multi-trait analysis.

When classes of heterogeneity of residual variances were modeled, the homogeneous 
model produced the worst fit according to the criteria lnL, LRT, and CN, indicating different 
behavior of the residual variance during the individuals’ growth. Similar results were obtained 
by Baldi et al. (2010a) and Sarmento et al. (2010a,b), who suggested the use of heterogeneity 
of residual variances in working with Canchim beef cattle and Santa Inês sheep, respectively. 
However, by other criteria (AIC and BIC), the model that considers homogeneity of residual 
variance was the most appropriate and then the most indicated to model the trajectory of 
growth of Simmental beef cattle.

Furthermore, the inclusion of classes of residual variances produces an increase in di-
rect additive genetic variance, generating estimates of heritability much higher and divergent 
from those commonly found in the literature for growth traits in beef cattle (Marques et al., 
1999; Krejcová et al., 2007; Baldi et al., 2010a,b; Menezes, 2010). Therefore, we chose the 
model that considered homogeneity of variance, despite not having been the most appropriate 
with all criteria (lnL, LRT, and NC). Another reason for choosing this model is because it is 
more parsimonious and provides estimates of heritability (genetic parameters) more realistic 
and closer to those found in the literature.

As can be observed in Figure 3, there was an increase in phenotypic variance (σ2
p) in 

relation to the age of the animals for both MTM and RRM. This increase was mainly attributed 
to the progression of direct additive genetic variance (σ2

d) along the growth curve, and also by 
the fact that at older ages, weights are usually of greater magnitude, due to scale effect. Similar 
results were reported by Marques et al. (1999), who worked with the Simmental beef cattle 
in MTM and observed crescent direct additive genetic variances. Baldi et al. (2010a) in their 
study with Canchim beef cattle observed an increase in these variances as of 18 months old 
and of the same magnitude in both MTM and RRM analysis.

Estimates of maternal genetic variances (σ2
m) were, in general, divergent in MTM 

and RRM (Figure 3). From 100 to 205 days of age, there was a slight increase for MTM and 
marked decrease in RRM. The growth in MTM is expected because of the greater maternal in-
fluence during this period; however, the decrease in RRM is not. This decrease can be brought 
about by problems that RRM pose in the adjustment of the polynomial function at the end of 
the age range to be able to estimate (co)variance components not consistent with biological 
reality. Starting at 205 days of age, a decrease in MTM was observed up to 550 days of age; 
in contrast, RRM demonstrated an increase in estimates in this interval. Starting at this age, a 
prominent growth was observed in both models.

Divergent results in MTM were reported by Marques et al. (1999), who observed a 
slight and constant increase during the growth curve. As for the RRM, Nobre et al. (2003) 
reported estimates of maternal genetic variance with constant growth from birth to mature age 
in Nellore beef cattle.

Regarding the maternal permanent environmental effect (σ2
mp), the estimates were di-

vergent in both models, with a more acute increase in RRM, especially after 550 days of age, 
which probably occurred due to the small number of records in that period (Figure 3). Menezes 
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(2010) obtained an abrupt increase in estimates of maternal permanent environmental effect, 
as of 480 days in Tabapuã beef cattle. However, another important point possible accounting 
for these estimates was the small number of calves per dam observed, which was on average 

Figure 3. Mean of estimates of direct genetic variance (σ2
d), maternal genetic (σ2

m), maternal permanent 
environmental (σ2

mp), composed residual (σ2
ec), and phenotypic (σ2

p) obtained by multi-trait (MTM) and random 
regression (RRM) models for the weights at 100 (W100), 205 (W205), 365 (W365), 450 (W450), 550 (W550), and 
730 (W730) days of age.
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1.45. Pelicioni et al. (2003) worked with Guzerá beef cattle, with an average number of calves 
per dam between 1.2 and 1.5 from birth to mature age, and asserted that it was not possible to 
estimate the maternal permanent environmental effect. Tanaka et al. (2009) and Bittencourt et 
al. (2002) also could not estimate the maternal permanent environmental effect in Guzerá beef 
cattle in their study with the average number of calves per dam less than 2.

Maniatis and Pollott (2003), in their work with Suffolk sheep, affirmed that data with 
limited structure may be the cause of biologically impossible estimates and that they would 
need several generations of records and the largest possible amount of relationship informa-
tion among animals and their dams to obtain more accurate estimates.

In general, estimates of composed residual variances (σ2
ec) were of the same mag-

nitude in both models. In MTM, the composed residual variances increased up to 365 days, 
when a slight decrease was observed until 450 days. Starting at this age, a new and more 
marked increase in these variances occurred (Figure 3). Baldi et al. (2010b) and Menezes 
(2010) obtained linear increasing in the estimates of residual variances along the growth tra-
jectory. In RRM, the same behavior reported in MTM was observed. However, a slight decline 
was observed in the interval of 100 to 205 days of age. This was possibly due to the large num-
ber of records near the age of 205 days, relative to 100 days, resulting in less error. Regarding 
RRM, results outside biological reality were diagnosed as of 550 days of age and were likely 
because of the small number of records available in that period, as previously described.

Direct heritabilities (h2
d) were similar in trend using MTM and RRM for weights at 

W100, W205, W365, W450, W550, and W730 days of age (Table 6). However, in general, the 
heritability estimates obtained by RRM were higher than those estimates obtained by MTM. 
Continued growth of this heritability was somewhat observed, except for the slight decrease 
at W730 for RRM, possibly because RRM provides less appropriate adjustments when there 
are few weight records.

Weights h2
d* h2

m* mp2* ec2*

W100 0.04 (0.16) 0.01 (0.08) 0.09 (0.01) 0.86 (0.75)
W205 0.11 (0.14) 0.01 (0.11) 0.08 (0.06) 0.80 (0.69)
W365 0.20 (0.36) 0.00 (0.09) 0.08 (0.08) 0.72 (0.47)
W450 0.27 (0.42) 0.01 (0.08) 0.10 (0.09) 0.62 (0.41)
W550 0.31 (0.46) 0.00 (0.09) 0.08 (0.09) 0.61 (0.36)
W730 0.42 (0.45) 0.03 (0.12) 0.06 (0.10) 0.49 (0.33)

Table 6. Estimates of heritability and variance, in relation to the total phenotypic variance, obtained for MTM 
and RRM (in parentheses) by the model Leg3333_1 for weights at 100 (W100), 205 (W205), 365 (W365), 450 
(W450), 550 (W550), and 730 (W730) days of age.

*Mean of two-trait analysis for MTM. h2
d = direct heritability; h2

m = maternal heritability; mp2 = proportion of 
maternal permanent environmental variance; ec2 = composed residual variance.

In MTM, the estimates were similar to those obtained by Marques et al. (2000) with 
values of h2

d for W100, W205, W365, and W550, respectively equal to 0.08, 0.13, 0.19, and 
0.24 in Simmental beef cattle. For RRM, the heritabilities found were generally higher than 
those reported by Krejcová et al. (2007), who used a third-order model for the direct additive 
genetic effect on Simmental beef cattle and found values of direct heritabilities equal to 0.07, 
0.15, 0.12, and 0.07 in age intervals that included, respectively, 100, 205, 365, and 450 days.

Maternal heritability values (h2
m) obtained in this study were of low magnitude and 

had generally the same behavior, increasing up to weaning with a slight decrease up to 365 
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days, and then, new rise until mature age (Table 6). This unexpected rise after 365 days of age 
can be explained by the small number of records observed after 1 year old. Divergent results 
in relation to this study were obtained by Baldi et al. (2010a) and Boligon et al. (2009), who 
obtained maximum estimates at birth, abrupt decrease after birth, increase up to 400 days of 
age, and a new gradual decrease until the end of the growth trajectory in Canchim and Nelore 
beef cattle, respectively.

Just as in the estimates of direct heritabilities, those estimated via RRM were higher. 
Menezes (2010) obtained similar results in his study with Tabapuã beef cattle, where maternal 
heritability estimates, in general, were higher in RRM compared to MTM.

Estimates of maternal permanent environmental variance (mp2), as a proportion of 
phenotypic variance, were generally similar in the 2 models (Table 6). However, the estimates 
for MTM were slightly higher in the beginning of the growth curve and slightly lower at the 
end of it.

Unlike the results obtained in this study, Baldi et al. (2010a) obtained estimates of 
maternal permanent environmental variances higher in MTM when compared to random re-
gression. Although, Menezes (2010) and Boligon et al. (2009) obtained divergent results and 
did not observe differences between the estimates in these 2 models, and in both results there 
were also gradual decreases in these estimates from weaning and birth, respectively.

Regarding the composed residual variance (ec2) as a proportion of phenotypic vari-
ance, the results obtained by MTM were superior to those by RRM throughout the growth tra-
jectory of animals (Table 6), which can be indicative of the superior quality of adjustment for 
RRM in relation to MTM (Menezes, 2010). Similar results were obtained by Menezes (2010) 
in Tabapuã beef cattle for ec2 estimates, which were slightly higher in MTM.

Excepting the correlations between W100 and the other ages via RRM whereupon 
they were negative and of low magnitude, the results for the direct additive genetic correla-
tions, for both RRM and MTM, are in the range of values   seen in the literature (Sakaguti et 
al., 2003; Dias et al., 2006; Baldi et al., 2010a,b; Menezes, 2010; Sousa Júnior et al., 2010). 
Estimates of direct additive genetic correlations obtained for the MTM and RRM were gener-
ally high and positive, indicating that part of the action of additive genes which influences one 
trait also influences the other (Table 7).

Weight W100 W205 W365 W450 W550 W730

W100 - 0.99 (0.05)  0.92 (-0.42)  0.66 (-0.47)  1.00 (-0.48)  0.82 (-0.42)
W205 0.69 (0.24) - 0.99 (0.86) 1.00 (0.78) 0.96 (0.68) 1.00 (0.46)
W365 0.34 (0.10) 0.53 (0.58) - 0.94 (0.99) 0.93 (0.94) 0.83 (0.78)
W450 0.42 (0.04) 0.53 (0.54) 0.91 (0.80) - 0.98 (0.98) 0.92 (0.86)
W550  0.30 (-0.02) 0.46 (0.45) 0.81 (0.76) 0.91 (0.85) - 1.00 (0.94)
W730  0.19 (-0.11) 0.40 (0.23) 0.61 (0.58) 0.74 (0.72) 0.81 (0.85) -

Table 7. Estimates of direct additive genetic correlations (above diagonal) and phenotypic (below diagonal) 
obtained via MTM and RRM (in parentheses) by the model Leg3333_1 for weights at 100 (W100), 205 
(W205), 365 (W365), 450 (W450), 550 (W550), and 730 (W730) days of age.

However, correlations obtained with MTM were, in general, superior to those with 
RRM. Similar results were reported by Iwaisaki et al. (2005) and Menezes (2010), who 
worked, respectively, with Gelbvieh and Tabapuã breeds and obtained estimates of direct ad-
ditive genetic correlations superior in MTM, when compared to RRM.
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The results of estimates among W100 and the other estimated ages can probably be 
explained by problems arising from the polynomial function, since correlations between these 
measures, predominantly positive, are expected because the weight of the animals is the re-
sult of the cumulative sum of the gain throughout life, which creates a structural dependence 
between them.

Regarding the phenotypic correlations between the weights studied, they tended to be 
generally higher at closer ages. However, the same behavior was not observed for the correla-
tions between W100 and the other ages, probably as a consequence of the behavior of direct 
genetic correlations, where such situation was also observed (Table 7). Sarmento et al. (2006) 
assessed growth traits of Santa Inês’ sheep breed and reported an increase in the magnitude of 
correlations, when the ages are close.

The phenotypic correlations obtained in MTM were of higher magnitude in relation 
to the RRM (Table 7), which differs from the results found by Sarmento et al. (2006), who 
observed smaller phenotypic correlations for MTM.

The genetic maternal correlations showed contrasting behavior compared to those 
normally seen in the literature (Albuquerque and Meyer, 2001; Baldi et al., 2010a,b; Menezes, 
2010). These authors obtained similar estimates, positive and of high magnitude, in compar-
ing MTM and RRM. In contrast, we observed that the values found for MTM were superior 
in relation to RRM (Table 8).

Weight W100 W205 W365 W450 W550 W730

W100 - 1.00 (0.97)  1.00 (0.77)  1.00 (0.55) -1.00 (0.23)  -1.00 (-0.23)
W205 1.00 (1.00) - -1.00 (0.90) -0.19 (0.74) -1.00 (0.47) -0.96 (0.02)
W365 0.88 (0.95) 0.89 (0.96) -  0.08 (0.96)  1.00 (0.80) -1.00 (0.45)
W450 0.69 (0.88) 0.67 (0.90)  1.00 (0.98) -  1.00 (0.94) -1.00 (0.69)
W550 0.82 (0.74) 1.00 (0.76)  0.85 (0.91)  1.00 (0.97) -  0.99 (0.89)
W730 1.00 (0.41) 1.00 (0.44)  1.00 (0.66)  1.00 (0.79)  1.00 (0.92) -

Table 8. Estimates of maternal genetic correlations (above diagonal) and maternal permanent environmental 
(below diagonal), obtained via MTM and RRM (in parentheses) by the model Leg3333-1 for the weights at 100 
(W100), 205 (W205), 365 (W365), 450 (W450), 550 (W550), and 730 (W730) days of age.

Elevated values were observed especially among the early ages, and according to 
Boligon et al. (2010), this indicates that maternal effects for these ages are controlled by the 
same genes. In addition, estimates of negative correlations were observed in both MTM and 
RRM, indicating a behavior outside biological reality, since positive and high magnitude cor-
relations are expected, as previously explained.

Estimates of maternal permanent environmental correlations in both MTM and RRM 
were, in general, of high magnitude and positive, and most of them equal to unity (Table 8). 
For MTM, a random behavior was observed along the growth curve, near unity among the 
ages at the beginning and the end of the curve, and slightly lower at ages located in the middle 
of the trajectory, confirming the results reported by Menezes (2010), who worked with Ta-
bapuã beef cattle and obtained positive and high magnitude estimates of maternal permanent 
environmental correlations.

In the meantime, RRM correlations tended to be smaller as the difference in ages 
grew. These results are in accordance with those obtained by Dias et al. (2006) in Tabapuã beef 
cattle and in contrast with those reported by Baldi et al. (2010a), who obtained estimates of 
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maternal permanent environmental correlations, close to unity in Canchim beef cattle.
Based on the results of this study, we can indicate the use of RRM in genetic evalu-

ation of breeding programs of Simmental beef cattle. We may point out the fact that RRM 
does not require pre-adjustment of weights at standard ages and a possible gain in accuracy of 
RRM. Meyer (2004), working with simulated data for beef cattle using MTM and RRM, con-
cluded that RRM are more accurate than MTM due to better modeling of variance components 
and genetic parameters, beyond the elimination of pre-adjusted ages in RRM.

A third-order RRM for the fixed regression curve and for random effects, direct ad-
ditive genetic, maternal genetic effect, maternal permanent environmental effect, and direct 
permanent environmental was sufficient to model the weight variance structures in the growth 
trajectory of animals.

Due to the possibility of implementation and lack of requirement for pre-adjustment 
weights at standard ages, RRM can be recommended in the genetic evaluation of Simmental 
beef cattle in Brazil.
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