Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1149731
Title: Mitochondrial retrograde signaling through UCP1-mediated inhibition of the plant oxygen-sensing pathway.
Authors: BARRETO, P.
DAMBIRE, C.
SHARMA, G.
VICENTE, J.
OSBORNE, R.
YASSITEPE, J. E. de C. T.
GIBBS, D. J.
MAIA, I. G.
HOLDSWORTH, M. J.
ARRUDA, P.
Affiliation: PEDRO BARRETO, UNIVERSIDADE ESTADUAL PAULISTA; CHARLENE DAMBIRE, UNIVERSITY OF NOTTINGHAM; GUNJAN SHARMA, UNIVERSITY OF NOTTINGHAM; JORGE VICENTE, UNIVERSITY OF NOTTINGHAM; RORY OSBORNE, UNIVERSITY OF BIRMINGHAM; JULIANA ERIKA DE C T YASSITEPE, CNPTIA; DANIEL J. GIBBS, UNIVERSITY OF BIRMINGHAM; IVAN G. MAIA, UNIVERSIDADE ESTADUAL PAULISTA; MICHAEL J. HOLDSWORTH, UNIVERSITY OF NOTTINGHAM; PAULO ARRUDA, UNIVERSIDADE ESTADUAL DE CAMPINAS.
Date Issued: 2022
Citation: Current Biology, v. 32, n. 6, p. 1403-1411, Mar. 2022.
Description: SUMMARY. Mitochondrial retrograde signaling is an important component of intracellular stress signaling in eukaryotes. UNCOUPLING PROTEIN (UCP)1 is an abundant plant inner-mitochondrial membrane protein with multiple functions including uncoupled respiration and amino-acid transport1,2 that influences broad abiotic stress responses. Although the mechanism(s) through which this retrograde function acts is unknown, overexpression of UCP1 activates expression of hypoxia (low oxygen)-associated nuclear genes.3,4 Here we show in Arabidopsis thaliana that UCP1 influences nuclear gene expression and physiological response by inhibiting the cytoplasmic PLANT CYSTEINE OXIDASE (PCO) branch of the PROTEOLYSIS (PRT)6 N-degron pathway, a major mechanism of oxygen and nitric oxide (NO) sensing.5 Overexpression of UCP1 (UCP1ox) resulted in the stabilization of an artificial PCO N-degron pathway substrate, and stability of this reporter protein was influenced by pharmacological interventions that control UCP1 activity. Hypoxia and salt-tolerant phenotypes observed in UCP1ox lines resembled those observed for the PRT6 N-recognin E3 ligase mutant prt6-1. Genetic analysis showed that UCP1 regulation of hypoxia responses required the activity of PCO N-degron pathway ETHYLENE RESPONSE FACTOR (ERF)VII substrates. Transcript expression analysis indicated that UCP1 regulation of hypoxia-related gene expression is a normal component of seedling development. Our results show that mitochondrial retrograde signaling represses the PCO N-degron pathway, enhancing substrate function, thus facilitating downstream stress responses. This work reveals a novel mechanism through which mitochondrial retrograde signaling influences nuclear response to hypoxia by inhibition of an ancient cytoplasmic pathway of eukaryotic oxygen sensing.
Thesagro: Mitocôndria
NAL Thesaurus: Arabidopsis thaliana
Gene expression
Gene overexpression
Hypoxia
Keywords: Expressão gênica
Resposta fisiológica
DOI: https://doi.org/10.1016/j.cub.2022.01.037
Notes: Short communication. Na publicação: Juliana Yassitepe.
Type of Material: Artigo de periódico
Access: openAccess
Appears in Collections:Nota Técnica/Nota científica (CNPTIA)

Files in This Item:
File SizeFormat 
AP-Mitochondrial-retrograde-2022.pdf2,05 MBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace