Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1045860
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLOPES, I. de O. N.pt_BR
dc.contributor.authorSCHLIEP, A.pt_BR
dc.contributor.authorCARVALHO, A. P. de L. F. dept_BR
dc.date.accessioned2016-05-30T11:11:11Zpt_BR
dc.date.available2016-05-30T11:11:11Zpt_BR
dc.date.created2016-05-30pt_BR
dc.date.issued2016pt_BR
dc.identifier.citationBMC Bioinformatics, v. 17, n. 224, 18 p., 2016.pt_BR
dc.identifier.issn1471-2105pt_BR
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1045860pt_BR
dc.descriptionDiscovery of microRNAs (miRNAs) relies on predictive models for characteristic features from miRNA precursors (pre-miRNAs). The short length of miRNA genes and the lack of pronounced sequence features complicate this task. To accommodate the peculiarities of plant and animal miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the species for which they were primarily developed and, consequently, their predictive performance on data sets from other species of the same kingdom might be lower. While these biases are intrinsic to the species, their characterization can lead to computational approaches capable of diminishing their negative effect on the accuracy of pre-miRNAs predictive models. We investigate in this study how 45 predictive models induced for data sets from 45 species, distributed in eight subphyla/classes, perform when applied to a species different from the species used in its induction. Results: Our computational experiments show that the separability of pre-miRNAs and pseudo pre-miRNAs instances is species-dependent and no feature set performs well for all species, even within the same subphylum/class. Mitigating this species dependency, we show that an ensemble of classifiers reduced the classification errors for all 45 species. As the ensemble members were obtained using meaningful, and yet computationally viable feature sets, the ensembles also have a lower computational cost than individual classifiers that rely on energy stability parameters, which are of prohibitive computational cost in large scale applications. Conclusion: In this study, the combination of multiple pre-miRNAs feature sets and multiple learning biases enhanced the predictive accuracy of pre-miRNAs classifiers of 45 species. This is certainly a promising approach to be incorporated in miRNA discovery tools towards more accurate and less species-dependent tools.pt_BR
dc.language.isoporpt_BR
dc.rightsopenAccesspt_BR
dc.subjectBioinformáticapt_BR
dc.titleAutomatic learning of pre-miRNAs from different species.pt_BR
dc.typeArtigo de periódicopt_BR
dc.date.updated2017-07-26T11:11:11Zpt_BR
dc.subject.thesagroBiologiapt_BR
dc.subject.thesagroAutomaçãopt_BR
dc.subject.nalthesaurusBioinformaticspt_BR
dc.subject.nalthesaurusBiological Sciencespt_BR
riaa.ainfo.id1045860pt_BR
riaa.ainfo.lastupdate2017-07-26pt_BR
dc.identifier.doi10.1186/s12859-016-1036-3pt_BR
dc.contributor.institutionIVANI DE OLIVEIRA NEGRAO LOPES, CNPSO; ALEXANDER SCHLIEP, Rutgers University, USA; ANDRÉ P. DE L. F. de CARVALHO, Instituto de Ciências Matemáticas e de Computação, São Carlos.pt_BR
Appears in Collections:Artigo em periódico indexado (CNPSO)

Files in This Item:
File Description SizeFormat 
AutomaticlearningofpremiRNAsfromdifferentspecies.pdf2,21 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace