Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1055915
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMALLICK, K.pt_BR
dc.contributor.authorTREBS, I.pt_BR
dc.contributor.authorBOEGH, E.pt_BR
dc.contributor.authorGIUSTARINI, L.pt_BR
dc.contributor.authorSCHLERF, M.pt_BR
dc.contributor.authorDREWRY, D. T.pt_BR
dc.contributor.authorHOFFMANN, L.pt_BR
dc.contributor.authorRANDOW, C. vonpt_BR
dc.contributor.authorKRUIJT, B.pt_BR
dc.contributor.authorARAUJO, A.pt_BR
dc.contributor.authorSALESKA, S.pt_BR
dc.contributor.authorEHLERINGER, J. R.pt_BR
dc.contributor.authorDOMINGUES, T. F.pt_BR
dc.contributor.authorOMETTO, J. P. H. B.pt_BR
dc.contributor.authorNOBRE, A. D.pt_BR
dc.contributor.authorMORAES, O. L. L. dept_BR
dc.contributor.authorHAYEK, M.pt_BR
dc.contributor.authorMUNGER, J. W.pt_BR
dc.contributor.authorWOFSY, S. C.pt_BR
dc.date.accessioned2016-11-04T11:11:11Zpt_BR
dc.date.available2016-11-04T11:11:11Zpt_BR
dc.date.created2016-11-04pt_BR
dc.date.issued2016pt_BR
dc.identifier.citationHydrology and Earth System Science Discussions, 27 Jan. 2016.pt_BR
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1055915pt_BR
dc.descriptionCanopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.pt_BR
dc.language.isoporpt_BR
dc.rightsopenAccesspt_BR
dc.subjectTranspiraçãopt_BR
dc.titleCanopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin.pt_BR
dc.typeArtigo de periódicopt_BR
dc.date.updated2017-03-03T11:11:11Zpt_BR
dc.subject.thesagroClimatologiapt_BR
dc.subject.thesagroEvaporaçãopt_BR
dc.subject.nalthesaurusAmazoniapt_BR
riaa.ainfo.id1055915pt_BR
riaa.ainfo.lastupdate2017-03-03pt_BR
dc.identifier.doi10.5194/hess-2015-552pt_BR
dc.contributor.institutionKANISKA MALLICK, Luxembourg Institute of Science and Technologypt_BR
dc.contributor.institutionIVONNE TREBS, Luxembourg Institute of Science and Technologypt_BR
dc.contributor.institutionEVA BOEGH, Roskilde Universitypt_BR
dc.contributor.institutionLAURA GIUSTARINI, Luxembourg Institute of Science and Technologypt_BR
dc.contributor.institutionMARTIN SCHLERF, Luxembourg Institute of Science and Technologypt_BR
dc.contributor.institutionDARREN DREWRY, California Institute of Technologypt_BR
dc.contributor.institutionLUCIEN HOFFMANN, Luxembourg Institute of Science and Technologypt_BR
dc.contributor.institutionCELSO VON RANDOW, INPEpt_BR
dc.contributor.institutionBART KRUIJT, Wageningen University and Research Centrept_BR
dc.contributor.institutionALESSANDRO CARIOCA DE ARAUJO, CPATUpt_BR
dc.contributor.institutionSCOTT SALESKA, University of Arizonapt_BR
dc.contributor.institutionJAMES R. EHLERINGER, University of Utahpt_BR
dc.contributor.institutionTOMAS F. DOMINGUES, USPpt_BR
dc.contributor.institutionJEAN PIERRE H. B. OMETTO, INPEpt_BR
dc.contributor.institutionANTONIO D. NOBRE, INPEpt_BR
dc.contributor.institutionOSVALDO LUIZ LEAL DE MORAES, Centro Nacional de Monitoramento e Alertas de Desastres Naturaispt_BR
dc.contributor.institutionMATTHEW HAYEK, Harvard Universitypt_BR
dc.contributor.institutionWILLIAM MUNGER, Harvard Universitypt_BR
dc.contributor.institutionSTEVE WOFSY, Harvard University.pt_BR
Aparece nas coleções:Outras publicações (CPATU)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
hess2015552.pdf4.5 MBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace