Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1082573
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCOSTA, W. S.
dc.contributor.authorFONSECA, L. M. G.
dc.contributor.authorKÖRTING, T. S.
dc.contributor.authorSIMÕES, M.
dc.contributor.authorBENDINI, H. N.
dc.contributor.authorSOUZA, R. C. M.
dc.date.accessioned2017-12-14T23:22:27Z-
dc.date.available2017-12-14T23:22:27Z-
dc.date.created2017-12-14
dc.date.issued2017
dc.identifier.citationIn: BRAZILIAN SYMPOSIUM ON GEOINFORMATICS, 18., 2017, Salvador. Proceedings... Salvador: Unifacs, 2017. p 40-51.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1082573-
dc.descriptionWith the amount of multitemporal and multiresolution images growing exponentially, the number of image segmentation applications is recently increasing and, simultaneously, new challenges arise. Hence, there is a need to explore new segmentation concepts and techniques that make use of the temporal dimension. This paper describes a spatio-temporal segmentation that adapts the traditional region growing technique to detect homogeneous regions in space and time in optical remote sensing images. Tests were conducted by considering the Dynamic Time Warping measure as the homogeneity criterion. Study cases on high temporal resolution for sequences of MODIS and Landsat-8 OLI vegetation indices products provided satisfactory outputs and demonstrated the potential of the spatio-temporal segmentation method.
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectSéries temporais
dc.subjectMODIS
dc.titleSegmentation of optical remote sensing images for detecting homogeneous regions in space and time.
dc.typeArtigo em anais e proceedings
dc.date.updated2019-01-08T11:11:11Zpt_BR
dc.subject.thesagroSensoriamento Remotopt_BR
dc.subject.nalthesaurusLandsatpt_BR
dc.subject.nalthesaurusRemote sensingpt_BR
dc.description.notesTambém publicado na Revista Brasileira de Cartografia, v. 70, n. 5, p. 1779-1801, 2018. Special Issue XIX Brazilian Syposium on GeoInformatics, 2018. DOI: 10.14393/rbcv70n5-45227.pt_BR
riaa.ainfo.id1082573
riaa.ainfo.lastupdate2019-01-08 -02:00:00
dc.contributor.institutionWANDERSON S. COSTA, INPE; LEILA M. G. FONSECA, INPE; THALES S. KÖRTING, INPE; MARGARETH GONCALVES SIMOES, CNPS; HUGO N. BENDINI, INPE; RICARDO C. M. SOUZA, INPE.
Aparece en las colecciones:Artigo em anais de congresso (CNPS)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2017081.pdf4.41 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace