Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1090733Registro completo de metadados
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.author | COSTA, W. | |
| dc.contributor.author | FONSECA, L. | |
| dc.contributor.author | KÖRTING, T. | |
| dc.contributor.author | SIMÕES, M. | |
| dc.contributor.author | KUCHLER, P. | |
| dc.date.accessioned | 2018-04-20T01:10:39Z | - |
| dc.date.available | 2018-04-20T01:10:39Z | - |
| dc.date.created | 2018-04-19 | |
| dc.date.issued | 2018 | |
| dc.identifier.citation | In: INTERNATIONAL CONFERENCE ON ADVANCED GEOGRAPHIC INFORMATION SYSTEMS, APPLICATIONS, AND SERVICES, 10., 2018, Rome. Proceedings... Haifa: Israel Institute of Technology, 2018. p. 66-70. | |
| dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1090733 | - |
| dc.description | Continuous observations from remote sensors provide high temporal and spatial resolution imagery, and better remote sensing image segmentation techniques are mandatory for efficient analysis. Among them, one of the most applied segmentation techniques is the region growing algorithm. Within this context, this paper describes a study case for a multitemporal segmentation that adapts the traditional region growing technique. Our method aims to detect homogeneous regions in space and time observing a sequence of optical remote sensing images. Tests were conducted by considering the Dynamic Time Warping distance as the homogeneity criterion to grow regions. A case study on high temporal resolution for sequences of Landsat-8 vegetation indices products provided satisfactory outputs. | |
| dc.language.iso | eng | eng |
| dc.rights | openAccess | eng |
| dc.subject | Segmentação multitemporal | |
| dc.subject | Dynamic Time Warping | |
| dc.subject | Processamento de imagem | |
| dc.title | A case study for a multitemporal segmentation approach in optical remote sensing images. | |
| dc.type | Artigo em anais e proceedings | |
| dc.date.updated | 2019-04-16T11:11:11Z | pt_BR |
| dc.subject.thesagro | Sistema de informação geográfica | |
| dc.subject.thesagro | Sensoriamento remoto | |
| dc.description.notes | GEOProcessing 2018. | |
| riaa.ainfo.id | 1090733 | |
| riaa.ainfo.lastupdate | 2019-04-16 -03:00:00 | |
| dc.contributor.institution | WANDERSON COSTA, INPE; LEILA FONSECA, INPE; THALES KÖRTING, INPE; MARGARETH GONCALVES SIMOES, CNPS; PATRICK KUCHLER, UERJ; CIRAD. | |
| Aparece nas coleções: | Artigo em anais de congresso (CNPS)![]() ![]() | |
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| 2018012.pdf | 1,43 MB | Adobe PDF | ![]() Visualizar/Abrir |








