Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1097748
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCHAGAS, C. da S.
dc.contributor.authorCARVALHO JUNIOR, W. de
dc.contributor.authorPINHEIRO, H. S. K.
dc.contributor.authorXAVIER, P. A. M.
dc.contributor.authorBHERING, S. B.
dc.contributor.authorPEREIRA, N. R.
dc.contributor.authorCALDERANO FILHO, B.
dc.date.accessioned2018-11-28T23:39:54Z-
dc.date.available2018-11-28T23:39:54Z-
dc.date.created2018-10-18
dc.date.issued2018
dc.identifier.citationRevista Brasileira de Ciência do Solo, v. 42, article e0170183, 2018.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1097748-
dc.descriptionPlanning sustainable use of land resources requires reliable information about spatial distribution of soil physical and chemical properties related to environmental processes and ecosystemic functions. In this context, cation exchange capacity (CEC) is a fundamental soil quality indicator; however, it takes money and time to obtain this data. Although many studies have been conducted to spatially quantify soil properties on various scales and in different environments, not much is known about interactions between soil properties and environmental covariates in the Brazilian semiarid region. The goal of this study was to evaluate the efficiency of random forest and cokriging models applied to predict CEC in the Brazilian semiarid region. The covariates used to predict CEC consist of images from Landsat 5 TM and a legacy soil map (scale 1:10,000). The sample set comprises 499 samples from the topsoil layer (0.00-0.20 m), where 375 samples were used in training processes and 124 as validation samples. The cokriging model (R2= 0.57 and RMSE = 7.22 cmol c kg-1) performed better in predicting CEC than the random forest model (R2= 0.47 and RMSE = 7.89 cmol c kg-1). The approach used showed potential for estimating CEC content in the Brazilian semiarid region by using covariates obtained from orbital remote sensing and the legacy soil map.
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectMineração de dados
dc.subjectGeoestatística
dc.subjectLandsat 5
dc.titleMapping soil cation exchange capacity in a semiarid region through predictive models and covariates from remote sensing data.
dc.typeArtigo de periódico
dc.date.updated2018-11-28T23:39:54Zpt_BR
dc.subject.thesagroSolo
dc.subject.thesagroLevantamento
dc.subject.thesagroReconhecimento do Solo
dc.subject.nalthesaurusSoil surveys
riaa.ainfo.id1097748
riaa.ainfo.lastupdate2018-11-28
dc.identifier.doi10.1590/18069657rbcs20170183
dc.contributor.institutionCESAR DA SILVA CHAGAS, CNPS; WALDIR DE CARVALHO JUNIOR, CNPS; Helena Saraiva Koenow Pinheiro, Universidade Federal Rural do Rio de Janeiro; Pedro Armentano Mudado Xavier, Universidade Federal Rural do Rio de Janeiro; SILVIO BARGE BHERING, CNPS; NILSON RENDEIRO PEREIRA, CNPS; BRAZ CALDERANO FILHO, CNPS.
Aparece en las colecciones:Artigo em periódico indexado (CNPS)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
MappingSoilCationExchange.pdf607.43 kBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace