Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1108077
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCRUSCIOL, C. A. C.pt_BR
dc.contributor.authorFERRARI NETO, J.pt_BR
dc.contributor.authorMUI, T. S.pt_BR
dc.contributor.authorFRANZLUEBBERS, A. J.pt_BR
dc.contributor.authorCOSTA, C. H. M. DApt_BR
dc.contributor.authorCASTRO, G. S. A.pt_BR
dc.contributor.authorRIBEIRO, L. C.pt_BR
dc.contributor.authorCOSTA, N. R.pt_BR
dc.date.accessioned2019-04-10T00:41:16Z-
dc.date.available2019-04-10T00:41:16Z-
dc.date.created2019-04-09
dc.date.issued2019
dc.identifier.citationRevista Brasileira de Ciência do Solo, v. 43, p. e0170399, 2019.pt_BR
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1108077-
dc.descriptionPeanut (Arachis hypogea) is an important legume grain consumed by humans and utilized for effective nutrient cycling in a diverse cropping system. Areas that have been cultivated with perennial pasture for decades may have nutritional deficiencies and lack a sufficient population of atmospheric nitrogen-fixing bacteria. Molybdenum is an essential micronutrient that is part of the enzyme nitrogenase contained within symbiotic Bradyrhizobium bacteria, which are responsible for fixing nitrogen in legumes. Our objective was to evaluate the effects of application of Mo at different rates and a rhizobial inoculant on peanut growth characteristics. The experiment was conducted in the 2009/2010 growing season in a no-tillage cropping system following 20-year use as pasture [Urochloa brizantha (Syn. Brachiaria brizantha)]. The experimental design was a randomized complete block with four replicates. The main plots were characterized by peanut inoculation with Bradyrhizobium inoculant or without, and the split plots were characterized by different rates of molybdenum (0, 50, 100, and 200 g ha-1) applied to leaves in the form of ammonium molybdate. The nutritional status of plants, nodulation (number of nodules and nodule dry matter per plant), nitrogenase activity, and nitrogenase specific activity were evaluated at 45 and 64 days after emergence (DAE). The yield components and kernel yield were evaluated at the end of the growing season. Nitrogenase enzyme activity at 64 DAE approximately doubled, and the number of pods per plant was greater with inoculation than without, both of which led to greater yields of pods and kernels. In long-term pasture areas, inoculation and molybdenum fertilization greater than the currently recommended rate appear to be necessary to increase pod and kernel yield per hectare of peanut when managed under no-tillage.pt_BR
dc.language.isoporpt_BR
dc.rightsopenAccesspt_BR
dc.subjectSymbiotic fixationpt_BR
dc.subjectNitrogenase activitypt_BR
dc.titleRhizobial inoculation and molybdenum fertilization in peanut crops grown in a no tillage system after 20 years of pasture.pt_BR
dc.typeArtigo de periódicopt_BR
dc.date.updated2019-04-26T11:11:11Z
dc.subject.nalthesaurusArachis hypogaea subsp. hypogaeapt_BR
dc.subject.nalthesaurusUrochloa brizanthapt_BR
dc.subject.nalthesaurusNodulationpt_BR
dc.format.extent219 p.pt_BR
riaa.ainfo.id1108077pt_BR
riaa.ainfo.lastupdate2020-04-27 -03:00:00
dc.identifier.doihttp://dx.doi.org/10.1590/18069657rbcs20170399pt_BR
dc.contributor.institutionCARLOS ALEXANDRE COSTA CRUSCIOL, UNESP; JAYME FERRARI NETO, UNIVERSIDADE CATÓLICA DOM BOSCO; TSAI SIU MUI, USP; ALAN JOSEPH FRANZLUEBBERS, USDA; CLÁUDIO HIDEO MARTINS DA COSTA, UFG; GUSTAVO SPADOTTI AMARAL CASTRO, CNPM; LÍVIA CRISTINA RIBEIRO, UNESP; NÍDIA RAQUEL COSTA, UNESP.pt_BR
Aparece nas coleções:Artigo em periódico indexado (CNPM)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
5048.pdf630,68 kBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace