Please use this identifier to cite or link to this item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1115064
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | VASQUES, G. de M. | eng |
dc.contributor.author | RODRIGUES, H. M. | eng |
dc.contributor.author | TAVARES, S. R. de L. | eng |
dc.contributor.author | COELHO, M. R. | eng |
dc.date.accessioned | 2019-11-25T18:22:39Z | - |
dc.date.available | 2019-11-25T18:22:39Z | - |
dc.date.created | 2019-11-25 | |
dc.date.issued | 2019 | |
dc.identifier.citation | In: WORLD CONGRESS OF SOIL SCIENCE, 21., 2018, Rio de Janeiro. Soil science: beyond food and fuel: proceedings... Viçosa, MG: SBCS, 2019. v. 2, p. 535-536. WCSS 2018. | eng |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1115064 | - |
dc.description | In this study, data from NIR, gamma ray and XRF curves, and three multivariate methods (partial least squares regression - PLS, random forest - RF, and support vector machine - SVM) were used to predict soil clay content at 0-10-cm depth. Training and validation data included 103 and 25 samples, respectively. Gamma ray and XRF data were taken in situ at the soil surface, using portable sensors, whereas NIR reflectance curves (800-2500 nm) were measured from airdried fine earth samples in the laboratory. | eng |
dc.language.iso | eng | eng |
dc.rights | openAccess | eng |
dc.title | Predicting soil clay content from NIR, gamma-ray and XRF curves. | eng |
dc.type | Resumo em anais e proceedings | eng |
dc.date.updated | 2020-01-03T11:11:11Z | |
dc.subject.thesagro | Sensoriamento Remoto | eng |
riaa.ainfo.id | 1115064 | eng |
riaa.ainfo.lastupdate | 2020-01-03 -02:00:00 | |
dc.contributor.institution | GUSTAVO DE MATTOS VASQUES, CNPS; HUGO MACHADO RODRIGUES, UFRRJ; SILVIO ROBERTO DE LUCENA TAVARES, CNPS; MAURICIO RIZZATO COELHO, CNPS. | eng |
Appears in Collections: | Resumo em anais de congresso (CNPS)![]() ![]() |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PredictingsoilclaycontentfromNIRgammarayandXRFcurves2019.pdf | 158.45 kB | Adobe PDF | ![]() View/Open |