Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1115795
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMOREIRA, B. R. de A.eng
dc.contributor.authorVIANA, R. da S.eng
dc.contributor.authorLISBOA, L. A. M.eng
dc.contributor.authorLOPES, P. R. M.eng
dc.contributor.authorFIGUEIREDO, P. A. M. deeng
dc.contributor.authorRAMOS, S. B.eng
dc.contributor.authorBONINI, C. S. B.eng
dc.contributor.authorTRINDADE, V. D. R.eng
dc.contributor.authorANDRADE, M. G. de O.eng
dc.contributor.authorMAY, A.eng
dc.date.accessioned2019-12-03T18:17:30Z-
dc.date.available2019-12-03T18:17:30Z-
dc.date.created2019-12-03
dc.date.issued2019
dc.identifier.citationJournal of Agricultural Science, Richmond Hill, v. 11, n. 14, p. 246-253, 2019.eng
dc.identifier.issn1916-9760eng
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1115795-
dc.descriptionAbstract: The biggest challenge facing in sugar-energy plants is to move towards the biorefinery concept, without threatening the environment and health. Energy cane is the state-of-the-art of smart energy crops to provide suitable whole-raw material to produce upgraded biofuels, dehydrated alcohol for transportation, refined sugar, yeast- fermented alcoholic beverages, soft drinks, silage and high quality fodder, as well as to cogenerate heat and bioelectricity from burnt lignocellulose. We, accordingly, present fuzzy c-means (FCM) clustering algorithm interconnected with principal component analysis (PCA) as powerful exploratory data analysis tool to wisely classify hybrids of energy cane for production of first-generation ethanol and cogeneration of heat and bioelectricity. From the orthogonally-rotated factorial map, fuzzy cluster I aggregated the hybrids VX12-0277, VX12-1191, VX12-1356 and VX12-1658 composed of higher contents of soluble solids and sucrose, and larger productive yields of fermentable sugars. These parameters correlated with the X-axis component referring to technological quality of cane juice. Fuzzy cluster III aggregated the hybrids VX12-0180 and VX12-1022 consisted of higher fiber content. This parameter correlated with the Y-axis component referring to physicochemical quality of lignocellulose. From the PCA-FCM methodology, the conclusion is, therefore, hybrids from fuzzy cluster I prove to be type I energy cane (higher sucrose to fiber ratio) and could serve as energy supply pathways to produce bioethanol, while the hybrids from fuzzy cluster III are type II energy cane (lower sucrose to fiber ratio), denoting potential as higher fiber yield biomass sources to feed cogeneration of heat and bioelectricity in high temperature and pressure furnace-boiler system.eng
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectAlternative clean energy sourceseng
dc.subjectExploratory data analysiseng
dc.subjectFCM algorithmeng
dc.subjectFiber-rich biomasseng
dc.subjectPCAeng
dc.titleClassifying hybrids of energy cane for production of bioethanol and cogeneration of biomass-based electricity by principal component analysis-linked fuzzy c-means clustering algorithm.eng
dc.typeArtigo de periódicoeng
dc.date.updated2019-12-05T11:11:11Z
dc.subject.thesagroCana de Açúcareng
dc.subject.thesagroHibridoeng
dc.subject.thesagroEtanoleng
dc.subject.thesagroBioenergiaeng
dc.subject.thesagroAnálise de Dadoseng
dc.subject.thesagroBiomassaeng
dc.subject.nalthesaurusSugarcaneeng
dc.subject.nalthesaurusHybridseng
dc.subject.nalthesaurusBiomasseng
dc.subject.nalthesaurusBioenergyeng
dc.subject.nalthesaurusEthanoleng
dc.subject.nalthesaurusData analysiseng
dc.subject.nalthesaurusFuzzy logiceng
riaa.ainfo.id1115795eng
riaa.ainfo.lastupdate2019-12-05 -02:00:00
dc.contributor.institutionBRUNO RAFAEL DE ALMEIRA MOREIRA, FEIS-UNESPeng
dc.contributor.institutionRONALDO DA SILVA VIANA, FCAT-UNESPeng
dc.contributor.institutionLUCAS APARECIDO MANZANI LISBOA, FCAT-UNESPeng
dc.contributor.institutionPAULO RENATO MATOS LOPES, FCAT-UNESPeng
dc.contributor.institutionPAULO ALEXANDRE MONTEIRO DE FIGUEIREDO, FCAT-UNESPeng
dc.contributor.institutionSÉRGIO BISPO RAMOS, FCAT-UNESPeng
dc.contributor.institutionCAROLINA DOS SANTOS BATISTA BONINI, FCAT-UNESPeng
dc.contributor.institutionV D R TRINDADE, UNESPeng
dc.contributor.institutionM G O ANDRADE, FEIS-UNESPeng
dc.contributor.institutionANDRE MAY, CNPMA.eng
Appears in Collections:Artigo em periódico indexado (CNPMA)

Files in This Item:
File Description SizeFormat 
MayClassifyingHybrids2019.pdf635.69 kBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace