Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123618
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCECHIM JÚNIOR, C.
dc.contributor.authorJOHANN, J. A.
dc.contributor.authorANTUNES, J. F. G.
dc.contributor.authorDEPPE, F.
dc.date.accessioned2020-07-04T11:10:47Z-
dc.date.available2020-07-04T11:10:47Z-
dc.date.created2020-07-03
dc.date.issued2020
dc.identifier.citationInternational Journal of Advanced Remote Sensing and GIS, v. 9, n. 1, p. 3205-3221, 2020.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1123618-
dc.descriptionAbstract Sugarcane cultivated in Brazil deserves attention because it makes the Country the world's largest producer of sugar and ethanol. The aim of this work was to develop and evaluate a methodology for sugarcane mapping in Paraná State, Brazil using temporal series of the MODIS EVI, for 2010/2011 to 2013/2014 crop seasons. The methodology included supervised classification Fuzzy ARTMAP, taking as input variables such as terms of harmonics amplitude and phase, and phenological metrics of culture. Area estimates indicated a moderate and strong correlation (rs), ranging from 0.62 to 0.71 comparing with IBGE official data and from 0.79 to 0.87 with the Canasat data. To assess mapping accuracy, Canasat vector maps were used as reference to build the confusion matrix. The method developed based on Fuzzy ARTMAP proved efficient to map and estimate the acreage of sugarcane in the State of Paraná, due to digital processing techniques used in homogeneous samples, selection of phenological seasonal metrics, and decomposition of images in accordance with harmonics and supervised training. These together minimized the neural network forecast errors. Results indicate that the methodology is appropriate for sugarcane mapping.
dc.language.isoeng
dc.rightsopenAccesseng
dc.subjectÍndice de vegetação
dc.subjectMapeamento de cana-de-açúcar
dc.subjectAnnual agriculture
dc.subjectTimeseries
dc.titleSugarcane mapping in Paraná State Brazil using MODIS EVI images.
dc.typeArtigo de periódico
dc.subject.thesagroCana de Açúcar
dc.subject.thesagroAgricultura
dc.subject.thesagroSensoriamento Remoto
dc.subject.nalthesaurusAgriculture
dc.subject.nalthesaurusSugarcane
dc.subject.nalthesaurusTime series analysis
dc.subject.nalthesaurusVegetation index
dc.subject.nalthesaurusRemote sensing
riaa.ainfo.id1123618
riaa.ainfo.lastupdate2020-07-03
dc.identifier.doihttps://doi.org/10.23953/cloud.ijarsg.451
dc.contributor.institutionCLÓVIS CECHIM JÚNIOR, Unioeste; JERRY ADRIANI JOHANN, Unioeste; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; FLÁVIO DEPPE, SIMEPAR.
Aparece en las colecciones:Artigo em periódico indexado (CNPTIA)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
AP-Sugarcane-mapping-2020.pdf1.03 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace