Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1124140
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorLOPES, L. S. S.
dc.contributor.authorRODE, R.
dc.contributor.authorPAULETTO, D.
dc.contributor.authorBALONEQUE, D. D.
dc.contributor.authorSANTOS, F. G. dos
dc.contributor.authorSILVA, A. R.
dc.contributor.authorBINOTI, D. H. B.
dc.contributor.authorLEITE, H. G.
dc.date.accessioned2020-08-01T11:13:10Z-
dc.date.available2020-08-01T11:13:10Z-
dc.date.created2020-07-31
dc.date.issued2020
dc.identifier.citationCiência da Madeira, v. 11, n. 2, p. 74-84, 2020.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1124140-
dc.descriptionEste trabalho objetivou comparar o volume de árvores de mogno africano estimado pelo modelo de Schumacher e Hall e por redes neurais artificiais. A coleta de dados ocorreu em dois sistemas agroflorestais no município de Belterra, Pará, com 7 e 11 anos de idade. Em cada local foram cubadas 34 árvores em pé. Para as estimativas de volume comercial foram empregadas as formas do modelo de Schumacher e Hall (linear e não linear) e uso de redes neurais artificiais (RNA) do tipo Multilayers perceptron. As arquiteturas de RNA com 4 neurônios na camada de entrada propiciaram as melhores estimativas e valores de erro, sensivelmente melhores do que os modelos volumétricos, tendo as RNA um erro 36,7% menor que o modelo de Schumacher e Hall não linear. Este último modelo apresentou tendência a superestimar os volumes e a RNA obteve estimativas mais livres de tendências. As redes neurais artificiais geraram estimativas com maior precisão em relação às formas do modelo de regressão. Essa técnica mostrou-se viável, pois uma única rede pode estimar o volume para diferentes locais, dispensando necessidade de estratificação.
dc.language.isopor
dc.rightsopenAccesspt_BR
dc.subjectMogno africano
dc.subjectVolumetria
dc.subjectRedes neurais
dc.subjectBelterra
dc.titleUso de regressão e redes neurais artificiais na estimativa do volume de Khaya ivorensis.
dc.typeArtigo de periódico
dc.subject.thesagroVolume
dc.subject.thesagroÁrvore
dc.subject.nalthesaurusKhaya ivorensis
riaa.ainfo.id1124140
riaa.ainfo.lastupdate2020-07-31
dc.identifier.doi10.12953/2177-6830/rcm.v11n2p74-84
dc.contributor.institutionLucas Sérgio Sousa Lopes, UFV; Rafael Rode, UFOPA; Daniela Pauletto, UFOPA; Diego Damázio Baloneque, UFOPA; Fábio Guerra dos Santos, IBAMA; ARYSTIDES RESENDE SILVA, CPATU; Daniel Henrique Breda Binoti, DAP Engenharia Florestal; Helio Garcia Leite, UFV.
Aparece en las colecciones:Artigo em periódico indexado (CPATU)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Artigo-Ciencia-da-Madeira-2020.pdf407.78 kBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace