Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1126063
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLOURENÇONI, D.
dc.contributor.authorABREU, P. G. de
dc.contributor.authorYANAGI JUNIOR, T.
dc.contributor.authorCAMPOS, A. T.
dc.contributor.authorYANAGI, S. de N. M.
dc.date.accessioned2020-10-29T09:15:27Z-
dc.date.available2020-10-29T09:15:27Z-
dc.date.created2020-10-28
dc.date.issued2019
dc.identifier.citationRevista Engenharia Agrícola, Jaboticabal, v. 39, n. 3, p. 265-271, 2019.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1126063-
dc.descriptionAbstract: The selection of the type of fuzzy systems pertinence curve allows a better representation of the mathematical model and a smaller simulation error. We aimed to study the effect of pertinence curves in fuzzy modeling of broiler performance, created in different production systems. For the development and testing of fuzzy models, three commercial aviaries (conventional, tunnel with negative pressure, and dark house) were evaluated over one year, totaling six lots per system. For the development of the model, the input variables were enthalpy in each rearing phase (initial: phases 1, 2, and 3; growth: phase 4; and final: phase 5) and the output variables were feed intake (FE), weight gain (GP), feed conversion (FE), and the productive efficiency index (PEI). Triangular, trapezoidal, and Gaussian pertinence curves were combined and applied to represent the input and output fuzzy sets, totaling nine fuzzy models for each output variable. The combinations of pertinence curves provided adequate responses for the prediction of AL, GP, RC, and PEI. However, the selection of the types of curves should be studied on a case-by-case basis, so that the smallest possible simulation errors are obtained.
dc.language.isoeng
dc.rightsopenAccesseng
dc.subjectSistemas fuzzy
dc.titlePertinence curves in fuzzy modeling of the productive responses of broilers.
dc.typeArtigo de periódico
dc.subject.thesagroAvicultura
dc.subject.thesagroFrango de Corte
dc.subject.thesagroProdução Animal
dc.subject.thesagroModelo Matemático
dc.subject.nalthesaurusFuzzy logic
riaa.ainfo.id1126063
riaa.ainfo.lastupdate2020-10-28
dc.identifier.doihttp://dx.doi.org/10.1590/1809-4430
dc.contributor.institutionDIAN LOURENÇONI, Univasf; PAULO GIOVANNI DE ABREU, CNPSA; TADAYUKI YANAGI JUNIOR, Univasf; ALESSANDRO T. CAMPOS, Univasf; SILVIA DE N. M. YANAGI, Univasf.
Aparece nas coleções:Artigo em periódico indexado (CNPSA)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
final9397.pdf943.42 kBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace