Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1128068
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorARAI, E.
dc.contributor.authorSANO, E. E.
dc.contributor.authorDUTRA. A. C.
dc.contributor.authorCASSOL, H. L. G.
dc.contributor.authorHOFFMANN, T. B.
dc.contributor.authorSHIMABUKURO, Y. E.
dc.date.accessioned2020-12-15T09:04:16Z-
dc.date.available2020-12-15T09:04:16Z-
dc.date.created2020-12-14
dc.date.issued2020
dc.identifier.citationRemote Sensing, v. 12, n. 7, 2020.
dc.identifier.issn2072-4292
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1128068-
dc.descriptionAbstract: This paper presents a new method for rapid assessment of the extent of annual croplands in Brazil. The proposed method applies a linear spectral mixing model (LSMM) to PROBA-V time series images to derive vegetation, soil, and shade fraction images for regional analysis. We used S10-TOC (10 days synthesis, 1 km spatial resolution, and top-of-canopy) products for Brazil and S5-TOC (five days synthesis, 100 m spatial resolution, and top-of-canopy) products for Mato Grosso State (Brazilian Legal Amazon). Using the time series of the vegetation fraction images of the whole year (2015 in this case), only one mosaic composed with maximum values of vegetation fraction was generated, allowing detecting and mapping semi-automatically the areas occupied by annual crops during the year. The results (100 m spatial resolution map) for the Mato Grosso State were compared with existing global datasets (Finer Resolution Observation and Monitoring?Global Land Cover (FROM-GLC) and Global Food Security?Support Analyses Data (GFSAD30)). Visually those maps present a good agreement, but the area estimated are not comparable since the agricultural class definition are different for those maps. In addition, we found 11.8 million ha of agricultural areas in the entire Brazilian territory. The area estimation for the Mato Grosso State was 3.4 million ha for 1 km dataset and 5.3 million ha for 100 m dataset. This difference is due to the spatial resolution of the PROBA-V datasets used. A coefficient of determination of 0.82 was found between PROBA-V 100 m and Landsat-8 OLI area estimations for the Mato Grosso State. Therefore, the proposed method is suitable for detecting and mapping annual croplands distribution operationally using PROBA-V datasets for regional analysis.
dc.language.isopor
dc.rightsopenAccesspt_BR
dc.subjectMato Grosso
dc.subjectMapeamento de terras agrícolas
dc.subjectFração máxima
dc.titleVegetation Fraction Images Derived from PROBA-V Data for Rapid Assessment of Annual Croplands in Brazil.
dc.typeArtigo de periódico
dc.subject.thesagroSensoriamento Remoto
dc.subject.thesagroCerrado
riaa.ainfo.id1128068
riaa.ainfo.lastupdate2020-12-14
dc.contributor.institutionEDSON EYJI SANO, CPAC.
Aparece en las colecciones:Artigo em periódico indexado (CPAC)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
SANO-VEGETATION-FRACTION-IMAGES-DERIVED.pdf18.99 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace