Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1131717
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFONTOURA, D. de C. N. da
dc.contributor.authorCAMARGO, S. da S.
dc.contributor.authorTORRES JUNIOR, R. A. de A.
dc.contributor.authorCARVALHO, H. G. de
dc.contributor.authorCARDOSO, F. F.
dc.contributor.otherD. DE CARVALHO NEVES DA FONTOURA, UNIPAMPA; S. DA SILVA CAMARGO, UNIPAMPA; ROBERTO AUGUSTO DE A TORRES JUNIOR, CNPGC; HENRY GOMES DE CARVALHO, CPPSUL; FERNANDO FLORES CARDOSO, CPPSUL.
dc.date.accessioned2021-05-07T02:10:19Z-
dc.date.available2021-05-07T02:10:19Z-
dc.date.created2021-05-06
dc.date.issued2019
dc.identifier.other14799
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1131717-
dc.descriptionBackground: Genetic Improvement Programs (GIP) aim to enhance productionefficiency of beef cattle. The main way to guide this enhancement is by choosing thebest mates among sires and cows, in order to maximize the offspring GeneticQualification Index (QGI), which is measured by an index defined by the GIP andcomputed for each animal of the herd. This paper describes a genetic algorithm, whichcan recommend an optimal set of matings among sires and cows, in order to maximizethe QGI of the herd. Breeders can define constraints regarding level of problems,which must be avoided, and they also can alter the traits relative importance consideredin QGI, according their particular interests. This algorithm was applied to a herd of aBrazilian breeder, which participates of a GIP, and it found optimal matings in order toincrease QGI value. We have simulated different scenarios considering variations onfitness functions, which combine QGI and level of problems, in order to find the optimalmatings. Proposed approach was successfully used to recommend optimal matingdecisions by Brazilian Hereford and Braford cattle breeders Association leading to animprovement of offspring QGI.Keywords: Genetic Improvement, Beef Cattle, Artificial Intelligence, EvolutionaryComputing.
dc.description.uribitstream/item/223096/1/Fontoura-et-al.pdf
dc.languageIngles
dc.language.isoen
dc.publisherIn: ICAR CONFERENCE, 43., 2019, Prague. Proceedings... Rome: ICAR, 2019.
dc.relation.ispartofEmbrapa Pecuária Sul - Artigo em anais de congresso (ALICE)
dc.relation.ispartofseries(ICAR. Technical series n. 24)
dc.titleOptimizing mate selection: a genetic algorithm approach.
dc.typeArtigo em anais de congresso (ALICE)
dc.subject.thesagroAcasalamento Controlado
dc.subject.thesagroAnálise
dc.subject.thesagroGado de Corte
dc.subject.thesagroPerformance
dc.subject.thesagroBovino
dc.description.notesEditors: J. Kucera, P. Bucek, D. Lipovsky, X. Bourrigan and M. Burke.
dc.format.extent2p. 54-62.
dc.ainfo.id1131717
dc.ainfo.lastupdate2021-05-06
Appears in Collections:Artigo em anais de congresso (CPPSUL)

Files in This Item:
File Description SizeFormat 
Fontoura-et-al.pdf313,09 kBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace