Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1136667
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSANTOS, T. T.
dc.contributor.authorGEBLER, L.
dc.date.accessioned2021-11-26T12:00:39Z-
dc.date.available2021-11-26T12:00:39Z-
dc.date.created2021-11-26
dc.date.issued2021
dc.identifier.citationIn: CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, 13., 2021, Bagé. Anais [...]. Bagé: Unipampa, 2021.
dc.identifier.isbn978-65-00-34526-1
dc.identifier.issn2177-9724
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1136667-
dc.descriptionAbstract. Computer vision methods based on convolutional neural networks (CNNs) have presented promising results on image-based fruit detection at ground-level for different crops. However, the integration of the detections found in different images, allowing accurate fruit counting and yield prediction, have received less attention. This work presents a methodology for automated fruit counting employing aerial-images. It includes algorithms based on multiple view geometry to perform fruits tracking, not just avoiding double counting but also locating the fruits in the 3-D space. Preliminary assessments show correlations above 0.8 between fruit counting and true yield for apples. The annotated dataset employed on CNN training is publicly available.
dc.language.isoeng
dc.rightsopenAccesseng
dc.subjectRedes neurais
dc.subjectContagem automática de frutas
dc.subjectDetecção de maçãs
dc.subjectConvolutional neural networks
dc.subjectFruit detection
dc.titleA methodology for detection and localization of fruits in apples orchards from aerial images.
dc.typeArtigo em anais e proceedings
dc.subject.thesagroMaçã
dc.subject.nalthesaurusNeural networks
dc.subject.nalthesaurusApples
dc.description.notesOrganizado por Ana Paula Lüdtke Ferreira. SBIAgro 2021.
dc.format.extent2p. 1-9.
riaa.ainfo.id1136667
riaa.ainfo.lastupdate2021-11-26
dc.contributor.institutionTHIAGO TEIXEIRA SANTOS, CNPTIA; LUCIANO GEBLER, CNPUV.
Appears in Collections:Artigo em anais de congresso (CNPTIA)

Files in This Item:
File Description SizeFormat 
PL-Methodology-detection-localization-SBIAgro-2021.pdf4,14 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace