Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1136667
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | SANTOS, T. T. | |
dc.contributor.author | GEBLER, L. | |
dc.date.accessioned | 2021-11-26T12:00:39Z | - |
dc.date.available | 2021-11-26T12:00:39Z | - |
dc.date.created | 2021-11-26 | |
dc.date.issued | 2021 | |
dc.identifier.citation | In: CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, 13., 2021, Bagé. Anais [...]. Bagé: Unipampa, 2021. | |
dc.identifier.isbn | 978-65-00-34526-1 | |
dc.identifier.issn | 2177-9724 | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1136667 | - |
dc.description | Abstract. Computer vision methods based on convolutional neural networks (CNNs) have presented promising results on image-based fruit detection at ground-level for different crops. However, the integration of the detections found in different images, allowing accurate fruit counting and yield prediction, have received less attention. This work presents a methodology for automated fruit counting employing aerial-images. It includes algorithms based on multiple view geometry to perform fruits tracking, not just avoiding double counting but also locating the fruits in the 3-D space. Preliminary assessments show correlations above 0.8 between fruit counting and true yield for apples. The annotated dataset employed on CNN training is publicly available. | |
dc.language.iso | eng | |
dc.rights | openAccess | eng |
dc.subject | Redes neurais | |
dc.subject | Contagem automática de frutas | |
dc.subject | Detecção de maçãs | |
dc.subject | Convolutional neural networks | |
dc.subject | Fruit detection | |
dc.title | A methodology for detection and localization of fruits in apples orchards from aerial images. | |
dc.type | Artigo em anais e proceedings | |
dc.subject.thesagro | Maçã | |
dc.subject.nalthesaurus | Neural networks | |
dc.subject.nalthesaurus | Apples | |
dc.description.notes | Organizado por Ana Paula Lüdtke Ferreira. SBIAgro 2021. | |
dc.format.extent2 | p. 1-9. | |
riaa.ainfo.id | 1136667 | |
riaa.ainfo.lastupdate | 2021-11-26 | |
dc.contributor.institution | THIAGO TEIXEIRA SANTOS, CNPTIA; LUCIANO GEBLER, CNPUV. | |
Aparece nas coleções: | Artigo em anais de congresso (CNPTIA)![]() ![]() |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
PL-Methodology-detection-localization-SBIAgro-2021.pdf | 4.14 MB | Adobe PDF | ![]() Visualizar/Abrir |