Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1136667
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSANTOS, T. T.
dc.contributor.authorGEBLER, L.
dc.date.accessioned2021-11-26T12:00:39Z-
dc.date.available2021-11-26T12:00:39Z-
dc.date.created2021-11-26
dc.date.issued2021
dc.identifier.citationIn: CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, 13., 2021, Bagé. Anais [...]. Bagé: Unipampa, 2021.
dc.identifier.isbn978-65-00-34526-1
dc.identifier.issn2177-9724
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1136667-
dc.descriptionAbstract. Computer vision methods based on convolutional neural networks (CNNs) have presented promising results on image-based fruit detection at ground-level for different crops. However, the integration of the detections found in different images, allowing accurate fruit counting and yield prediction, have received less attention. This work presents a methodology for automated fruit counting employing aerial-images. It includes algorithms based on multiple view geometry to perform fruits tracking, not just avoiding double counting but also locating the fruits in the 3-D space. Preliminary assessments show correlations above 0.8 between fruit counting and true yield for apples. The annotated dataset employed on CNN training is publicly available.
dc.language.isoeng
dc.rightsopenAccesseng
dc.subjectRedes neurais
dc.subjectContagem automática de frutas
dc.subjectDetecção de maçãs
dc.subjectConvolutional neural networks
dc.subjectFruit detection
dc.titleA methodology for detection and localization of fruits in apples orchards from aerial images.
dc.typeArtigo em anais e proceedings
dc.subject.thesagroMaçã
dc.subject.nalthesaurusNeural networks
dc.subject.nalthesaurusApples
dc.description.notesOrganizado por Ana Paula Lüdtke Ferreira. SBIAgro 2021.
dc.format.extent2p. 1-9.
riaa.ainfo.id1136667
riaa.ainfo.lastupdate2021-11-26
dc.contributor.institutionTHIAGO TEIXEIRA SANTOS, CNPTIA; LUCIANO GEBLER, CNPUV.
Aparece nas coleções:Artigo em anais de congresso (CNPTIA)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
PL-Methodology-detection-localization-SBIAgro-2021.pdf4.14 MBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace