Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1140014
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | BASTOS, B. | |
dc.contributor.author | PINHEIRO, H. | |
dc.contributor.author | CARVALHO JUNIOR, W. de | |
dc.date.accessioned | 2022-02-14T18:00:23Z | - |
dc.date.available | 2022-02-14T18:00:23Z | - |
dc.date.created | 2022-02-14 | |
dc.date.issued | 2022 | |
dc.identifier.citation | In: PEDOMETRICS BRAZIL, 2., 2021, Rio de Janeiro. Annals [...]. Rio de Janeiro: Embrapa Solos, 2022. Não paginado. Evento online. | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1140014 | - |
dc.description | Aero geophysical data is becoming an important source of environmental covariate in digital mapping. Airborne gamma-ray spectrometry is more common in digital soil mapping, because of the penetration potential of approximately 30-40 cm. However, the airborne magnetic method can be tested to add and improve the prediction of soil properties. Therefore, the objective of this work was to implement a preliminary study to model the spatial distribution of soil properties using pedological legacy data, aero geophysical data, and terrain covariates to discuss their importance to the digital soil mapping in Bom Jardim county, Rio de Janeiro, Brazil. | |
dc.language.iso | eng | |
dc.rights | openAccess | |
dc.subject | Digital soil mapping | |
dc.title | Geophysical data to modeling soil properties in tropical hillslope areas. | |
dc.type | Artigo em anais e proceedings | |
dc.subject.nalthesaurus | Soil properties | |
riaa.ainfo.id | 1140014 | |
riaa.ainfo.lastupdate | 2022-02-14 | |
dc.contributor.institution | BLENDA BASTOS, UFRRJ; HELENA PINHEIRO, UFRRJ; WALDIR DE CARVALHO JUNIOR, CNPS. | |
Aparece en las colecciones: | Artigo em anais de congresso (CNPS)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Geophysical-data-to-modeling-soil-properties-2022.pdf | 166.81 kB | Adobe PDF | ![]() Visualizar/Abrir |