Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1140033
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorVASQUES, G. de M.
dc.contributor.authorRODRIGUES, H. M.
dc.contributor.authorOLIVEIRA, R. P. de
dc.contributor.authorHERNANI, L. C.
dc.contributor.authorTAVARES, S. R. de L.
dc.date.accessioned2022-02-15T02:00:35Z-
dc.date.available2022-02-15T02:00:35Z-
dc.date.created2022-02-14
dc.date.issued2022
dc.identifier.citationIn: PEDOMETRICS BRAZIL, 2., 2021, Rio de Janeiro. Annals [...]. Rio de Janeiro: Embrapa Solos, 2022. Não paginado. Evento online.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1140033-
dc.descriptionThe objectives are to delineate soil management zones from soil proximal sensor data, and compare soil property values among zones in a 72-ha crop field in southeastern Brazil. Apparent electrical conductivity (aEC) and magnetic susceptibility (aMS), and equivalent Th (eTh) and U (eU) were measured across the field by a Geonics EM38-MK2 and a Medusa MS1200 sensors, respectively. These properties were kriged and used as input for delineating three management zones by fuzzy k-means clustering. Soil properties were measured at 0-10 cm at 72 sites, and their means were compared among the zones. Soil clay, organic C and exchangeable Ca and Mg vary significantly among the zones, according to Brown-Forsythe and Games-Howell tests (p=0.05), while pH, available P and exchangeable K do not. Zone delineation from proximal sensor data constitutes an efficient data-driven approach to separate the field into meaningful parts for soil, irrigation and crop management based on soil variation.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectGamma radiometrics
dc.titleManagement zones from proximal soil sensors capture within-field soil property and terrain variations.
dc.typeArtigo em anais e proceedings
dc.subject.nalthesaurusGeophysics
dc.subject.nalthesaurusElectrical conductivity
dc.subject.nalthesaurusPrecision agriculture
dc.subject.nalthesaurusGeostatistics
riaa.ainfo.id1140033
riaa.ainfo.lastupdate2022-02-14
dc.contributor.institutionGUSTAVO DE MATTOS VASQUES, CNPS; HUGO MACHADO RODRIGUES, UFRRJ; RONALDO PEREIRA DE OLIVEIRA, CNPS; LUIS CARLOS HERNANI, CNPS; SILVIO ROBERTO DE LUCENA TAVARES, CNPS.
Aparece nas coleções:Artigo em anais de congresso (CNPS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Management-zones-from-proximal-soil-sensors-capture-2022.pdf123.11 kBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace