Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1141899
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | LIMA, E. de S. | |
dc.contributor.author | SOUZA, Z. M. de | |
dc.contributor.author | OLIVEIRA, S. R. de M. | |
dc.contributor.author | MONTANARI, R. | |
dc.contributor.author | FARHATE, C. V. V. | |
dc.date.accessioned | 2022-04-06T12:05:44Z | - |
dc.date.available | 2022-04-06T12:05:44Z | - |
dc.date.created | 2022-04-06 | |
dc.date.issued | 2022 | |
dc.identifier.citation | Engenharia Agrícola, v. 42, e20210153, 2022. | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1141899 | - |
dc.description | Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Três Lagoas, in Mato Grosso do Sul, Brazil. | |
dc.language.iso | eng | |
dc.rights | openAccess | |
dc.subject | Variáveis físico-químicas do solo | |
dc.subject | Aprendizado de máquina | |
dc.subject | Conteúdo de fósforo no solo | |
dc.subject | Mistura de solos | |
dc.subject | Alumínio permutável | |
dc.subject | Eucalyptus urograndis | |
dc.subject | Floresta aleatória | |
dc.subject | Crescimento de eucalipto | |
dc.subject | Physicochemical variables of soil | |
dc.subject | Machine learning | |
dc.subject | Soil phosphorus content | |
dc.subject | Soil moisture | |
dc.title | Random forest model to predict the height of Eucalyptus. | |
dc.type | Artigo de periódico | |
dc.subject.nalthesaurus | Eucalyptus | |
dc.subject.nalthesaurus | Exchangeable aluminum | |
dc.description.notes | Special issue: artificial intelligence. | |
riaa.ainfo.id | 1141899 | |
riaa.ainfo.lastupdate | 2022-04-06 | |
dc.identifier.doi | http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022 | |
dc.contributor.institution | ELIZEU DE S. LIMA, FEAGRI/UNICAMP; ZIGOMAR MENEZES DE SOUZA, FEAGRI/UNICAMP; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; RAFAEL MONTANARI, UNESP; CAMILA VIANA VIEIRA FARHATE, FCAV/UNESP. | |
Aparece en las colecciones: | Artigo em periódico indexado (CNPTIA)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
AP-Random-forest-model-2022.pdf | 1.29 MB | Adobe PDF | ![]() Visualizar/Abrir |