Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142552
Título: | Analysis of pest incidence on apple trees validated by unsupervised machine learning algorithms. |
Autoria: | SPERANZA, E. A.![]() ![]() GREGO, C. R. ![]() ![]() GEBLER, L. ![]() ![]() |
Afiliação: | EDUARDO ANTONIO SPERANZA, CNPTIA; CELIA REGINA GREGO, CNPTIA; LUCIANO GEBLER, CNPUV. |
Ano de publicação: | 2022 |
Referência: | Engenharia na Agricultura, v. 30, p. 63-74, 2022. |
Conteúdo: | ABSTRACT. Integrated pest control is a practice commonly used in apple orchards in southern Brazil. This type of management is an important tool to help improve quality and increase yields. This study aimed to identify areas with higher and lower incidence of aerial pests in a commercial apple orchard, regarding data collected from three different crops using georeferenced traps. Geostatistical analyses were performed, based on the modeling of semivariograms and spatial interpolation using the kriging method; and clustering, based on specific unsupervised machine learning algorithms for count data. The algorithms were selected from measures of stability, connectivity and homogeneity, seeking to identify areas with different incidence of pests that could help farmer decision making regarding insect population control using pesticides. The geostatistical analysis verified the presence of individual pest infestations in specific sites of the study area. Additionally, the analysis using machine learning allowed the identification of areas with incidence above the average for all analyzed pests, especially in the central area of the map. The process of evaluation described in this study can serve as an aid for risk analysis, promoting management benefits and reducing cost in the farms. |
NAL Thesaurus: | Pest management Geostatistics Orchards Apples |
Palavras-chave: | Manejo de Pragas Geoestatística Análise geoestatística Aprendizado de Máquina Não-Supervisionado Pomares Maçãs Controle de pragas Unsupervised Machine Learning |
Digital Object Identifier: | https://doi.org/10.13083/reveng.v30i1.12919 |
Tipo do material: | Artigo de periódico |
Acesso: | openAccess |
Aparece nas coleções: | Artigo em periódico indexado (CNPTIA)![]() ![]() |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
AP-Analysis-pest-incidence-2022.pdf | 1.58 MB | Adobe PDF | ![]() Visualizar/Abrir |