Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142883
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorANDRADE JUNIOR, A. S. de
dc.contributor.authorSILVA, S. P. da
dc.contributor.authorSETÚBAL, I. S.
dc.contributor.authorSOUZA, H. A. de
dc.contributor.authorVIEIRA, P. F. de M. J.
dc.date.accessioned2022-05-11T20:12:30Z-
dc.date.available2022-05-11T20:12:30Z-
dc.date.created2022-05-11
dc.date.issued2022
dc.identifier.citationEngenharia Agrícola, v. 42, n. 2, e20210177, 2022.
dc.identifier.issn1809-4430
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1142883-
dc.descriptionDigital aerial images obtained by cameras embedded in remotely piloted aircraft (RPA) have been used to detect and monitor abiotic stresses in soybeans, such as water and nutritional deficiencies. This study aimed to evaluate the ability of vegetation indexes (VIs) from RPA images to remotely detect water and nutritional status in two soybean cultivars for nitrogen. The soybean cultivars BONUS and BRS-8980 were evaluated at the phenological stages R5 and R3 (beginning of seed enlargement), respectively. To do so, plants were subjected to two water regimes (100% ETc and 50% ETc) and two nitrogen (N) supplementation levels (with and without). Thirty-five VIs from multispectral aerial images were evaluated and correlated with stomatal conductance (gs) and leaf N content (NF) measurements. Near-infrared (NIR) spectral band, enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), and renormalized difference vegetation index (RDVI) showed linear correlation (p<0.001) with gs, standing out as promising indexes for detection of soybean water status. In turn, simplified canopy chlorophyll content index (SCCCI), red-edge chlorophyll index (RECI), green ratio vegetation index (GRVI), and chlorophyll vegetation index (CVI) were correlated with NF (p<0.001), thus being considered promising for the detection of leaf N content in soybeans.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectRPA
dc.subjectTroca gasosa
dc.subjectDrone
dc.titleRemote Detection of water and nutritional status of soybeans using UAV-based images.
dc.typeArtigo de periódico
dc.subject.thesagroGlycine Max
dc.subject.nalthesaurusVegetation index
dc.subject.nalthesaurusGas exchange
riaa.ainfo.id1142883
riaa.ainfo.lastupdate2022-05-11
dc.contributor.institutionADERSON SOARES DE ANDRADE JUNIOR, CPAMN; SILVESTRE P. DA SILVA, UFPI; INGRID S. SETÚBAL; HENRIQUE ANTUNES DE SOUZA, CPAMN; PAULO FERNANDO DE MELO JORGE VIEIRA, CPAMN.
Aparece nas coleções:Artigo em periódico indexado (CPAMN)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
REMOTE-DetectionWaterNutritionalStatusSoybeansEAgri42.2022.pdf1,67 MBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace