Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143266
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | ANDRADE JUNIOR, A. S. de | |
dc.contributor.author | SILVA, S. P. da | |
dc.contributor.author | SETUBAL, I. S. | |
dc.contributor.author | SOUZA, H. A. de | |
dc.contributor.author | VIEIRA, P. F. de M. J. | |
dc.contributor.author | CASARI, R. A. das C. N. | |
dc.date.accessioned | 2022-05-19T20:13:42Z | - |
dc.date.available | 2022-05-19T20:13:42Z | - |
dc.date.created | 2022-05-19 | |
dc.date.issued | 2022 | |
dc.identifier.citation | Revista Brasileira de Engenharia Agrícola e Ambiental, v. 26, n. 6, p. 466-476, 2022. | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143266 | - |
dc.description | This study aimed to evaluate the ability of vegetation indices (VIs) obtained from unmanned aerial vehicle (UAV) images to estimate soybean grain yield under soil and climate conditions in the Teresina microregion, Piaui state (PI), Brazil. Soybean cv. BRS-8980 was evaluated in stage R5 and submitted to two water regimes (WR) (100 and 50% of crop evapotranspiration - ETc) and two N levels (with and without N supplementation). | |
dc.language.iso | por | |
dc.rights | openAccess | |
dc.subject | Aeronave remotamente pilotada | |
dc.subject | Índices de vegetação | |
dc.subject | Autocorrelação | |
dc.title | Predicting soybean grain yield using aerial drone images. | |
dc.type | Artigo de periódico | |
dc.subject.thesagro | Glycine Max | |
riaa.ainfo.id | 1143266 | |
riaa.ainfo.lastupdate | 2022-05-19 | |
dc.contributor.institution | ADERSON SOARES DE ANDRADE JUNIOR, CPAMN; SILVESTRE P. DA SILVA, UFPI; INGRID S. SETUBAL, UFPI; HENRIQUE ANTUNES DE SOUZA, CPAMN; PAULO FERNANDO DE MELO JORGE VIEIRA, CPAMN; RAPHAEL A. DAS C. N. CASARI, CNPAE. | |
Aparece en las colecciones: | Artigo em periódico indexado (CPAMN)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
PredictingSoybeanGrainYieldRBEAA26.2022.pdf | 3.9 MB | Adobe PDF | ![]() Visualizar/Abrir |