Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1149383
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCARVALHO, R. R. B. de
dc.contributor.authorCORTES, D. F. M.
dc.contributor.authorSOUSA, M. B. e
dc.contributor.authorOLIVEIRA, L. A. de
dc.contributor.authorOLIVEIRA, E. J. de
dc.date.accessioned2022-12-08T15:01:26Z-
dc.date.available2022-12-08T15:01:26Z-
dc.date.created2022-12-08
dc.date.issued2022
dc.identifier.citationPLoS One, v.17, n.1, e0263326, January, 2022.
dc.identifier.issn1932-6203
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1149383-
dc.descriptionPhenotyping to quantify the total carotenoids content (TCC) is sensitive, time-consuming, tedious, and costly. The development of high-throughput phenotyping tools is essential for screening hundreds of cassava genotypes in a short period of time in the biofortification program. This study aimed to (i) use digital images to extract information on the pulp color of cassava roots and estimate correlations with TCC, and (ii) select predictive models for TCC using colorimetric indices. Red, green and blue images were captured in root samples from 228 biofortified genotypes and the difference in color was analyzed using L*, a*, b*, hue and chroma indices from the International Commission on Illumination (CIELAB) color system and lightness. Colorimetric data were used for principal component analysis (PCA), correlation and for developing prediction models for TCC based on regression and machine learning. A high positive correlation between TCC and the variables b* (r = 0.90) and chroma (r = 0.89) was identified, while the other correlations were median and negative, and the L* parameter did not present a significant correlation with TCC. In general, the accuracy of most prediction models (with all variables and only the most important ones) was high (R2 ranging from 0.81 to 0.94). However, the artificial neural network prediction model presented the best predictive ability (R2 = 0.94), associated with the smallest error in the TCC estimates (root-mean-square error of 0.24). The structure of the studied population revealed five groups and high genetic variability based on PCA regarding colorimetric indices and TCC. Our results demonstrated that the use of data obtained from digital image analysis is an economical, fast, and effective alternative for the development of TCC phenotyping tools in cassava roots with high predictive ability.
dc.language.isoeng
dc.rightsopenAccess
dc.titleImage-based phenotyping of cassava roots for diversity studies and carotenoids prediction.
dc.typeArtigo de periódico
dc.subject.thesagroMandioca
riaa.ainfo.id1149383
riaa.ainfo.lastupdate2022-12-08
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0263326
dc.contributor.institutionRAVENA ROCHA BESSA DE CARVALHO, UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA; DIEGO FERNANDO MARMOLEJO CORTES; MASSAINE BANDEIRA E SOUSA; LUCIANA ALVES DE OLIVEIRA, CNPMF; EDER JORGE DE OLIVEIRA, CNPMF.
Aparece en las colecciones:Artigo em periódico indexado (CNPMF)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
journal.pone.0263326.pdf3.76 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace