Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1149420
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSALGADO, F. F.
dc.contributor.authorVIEIRA, L. R.
dc.contributor.authorSILVA, V, N. B.
dc.contributor.authorLEAO, A. P.
dc.contributor.authorGRYNBERG, P.
dc.contributor.authorCOSTA, M. M. do C.
dc.contributor.authorTOGAWA, R. C.
dc.contributor.authorSOUSA, C. A. F. de
dc.contributor.authorSOUZA JUNIOR, M. T.
dc.date.accessioned2022-12-08T21:01:40Z-
dc.date.available2022-12-08T21:01:40Z-
dc.date.created2022-12-08
dc.date.issued2022
dc.identifier.citationIn: BRAZILIAN CONGRESS OF GENETICS, 67., 2022, Natal, RN. Porto Alegre: Sociedade Brasileira de Genética, 2022.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1149420-
dc.descriptionOil palm (Elaeis guineensis Jacq.) is an oilseed crop of great economic importance. The oil palm industry has a large-scale production worldwide and uses high efficient extraction and refining processes to obtain palm oil and palm kernel oil. In Brazil, currently, there is an extensive area suitable for oil palm planting outside the Amazon rainforest; however, these areas go through long periods of water scarcity and demand artificial irrigation to be sustainable. One-quarter of the irrigated area in agriculture has a problem with salinity stress.
dc.language.isoeng
dc.rightsopenAccess
dc.titlePrediction and identification of miRNAS in Elaeis Guinensis Jacq and analysis of their expression in oil palm plants under salinity drought stress.
dc.typeArtigo em anais e proceedings
dc.subject.nalthesaurusAbiotic stress
dc.subject.nalthesaurusTranscription factors
dc.subject.nalthesaurusNon-coding RNA
dc.subject.nalthesaurusOil palm products
dc.format.extent2p. 275
riaa.ainfo.id1149420
riaa.ainfo.lastupdate2022-12-08
dc.contributor.institutionFERNANDA FERREIRA SALGADO, UNIVERSIDADE FEDERAL DE LAVRAS; LETÍCIA RIOS VIEIRA, UNIVERSIDADE FEDERAL DE LAVRAS; VIVIANNY NAYSE BELO SILVA, UNIVERSIDADE FEDERAL DE LAVRAS; ANDRE PEREIRA LEAO, CNPAE; PRISCILA GRYNBERG, Cenargen; MARCOS MOTA DO CARMO COSTA, Cenargen; ROBERTO COITI TOGAWA, Cenargen; CARLOS ANTONIO FERREIRA DE SOUSA, CPAMN; MANOEL TEIXEIRA SOUZA JUNIOR, CNPAE.
Aparece nas coleções:Artigo em anais de congresso (CNPAE)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Prediction-and-identification.pdf386.85 kBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace