Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150828
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorSILVA, M. A. S. da
dc.contributor.authorMATOS, L. N.
dc.contributor.authorSANTOS, F. E. DE O.
dc.contributor.authorDOMPIERI, M. H. G.
dc.contributor.authorMOURA, F. R. DE
dc.date.accessioned2023-01-10T13:01:31Z-
dc.date.available2023-01-10T13:01:31Z-
dc.date.created2023-01-10
dc.date.issued2022
dc.identifier.citationIn: BRAZILIAN SYMPOSIUM ON GEOINFORMATICS, 22., 2022, São José dos Campos. Proceedings... São José dos Campos: MCTIC/INPE, 2022. p. 27-38.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1150828-
dc.descriptionABSTRACT - Brazilian agricultural production presents a high degree of spatial diversity, which challenges designing territorial public policies to promote sustainable development. This article proposes a new approach to cluster Brazilian municipalities according to their agricultural production. It combines a feature extraction mechanism using Deep Learning based on Autoencoders and clustering based on k-means and Self-Organizing Maps. We used the panel data from IBGE?s annual estimates of Brazilian agricultural production between 1999 and 2018. Different structures of simple stacked undercomplete autoencoders were analyzed, varying the number of layers and neurons in each of them, including the latent layer. We evaluated the asymmetric exponential linear loss function to cope with the sparse data. The results show that in comparison with the ground truth adopted, the autoencoder model combined with the Self-Organizing Maps and the k-means algorithm presented a better result than the clustering of the raw data from the k-means, demonstrating the ability of simple stacked autoencoders to reduce the dimensionality and create a new space of features in their latent layer where the data can be analyzed and clustered. Although the general accuracy is low, the results are promising, considering that we can add new improvements to the Deep Clustering process.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectClustering process
dc.titleFeature extraction of spatial panel data with autoencoders for clustering the Brazilian agricultural diversity.
dc.typeArtigo em anais e proceedings
dc.description.notesGEOINFO 2022.
riaa.ainfo.id1150828
riaa.ainfo.lastupdate2023-01-10
dc.contributor.institutionMARCOS AURELIO SANTOS DA SILVA, CPATC; LEONARDO NOGUEIRA MATOS, UNIVERSIDADE FEDERAL DE SERGIPE; FLÁVIO EMANUEL DE OLIVEIRA SANTOS, UNIVERSIDADE FEDERAL DE SERGIPE; MARCIA HELENA GALINA DOMPIERI, CNPM; FÁBIO RODRIGUES DE MOURA, UNIVERSIDADE FEDERAL DE SERGIPE.
Aparece en las colecciones:Artigo em anais de congresso (CNPM)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
6082.pdf424.14 kBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace