Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151204
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | SANTOS | |
dc.contributor.author | MARCATO JUNIOR, J. | |
dc.contributor.author | ZAMBONI, P. | |
dc.contributor.author | SANTOS, M. F. | |
dc.contributor.author | JANK, L. | |
dc.contributor.author | CAMPOS, E. | |
dc.contributor.author | MATSUBARA, E. T. | |
dc.date.accessioned | 2023-01-25T13:01:26Z | - |
dc.date.available | 2023-01-25T13:01:26Z | - |
dc.date.created | 2023-01-25 | |
dc.date.issued | 2022 | |
dc.identifier.citation | Sensors, v. 22, article 4116, 2022. | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151204 | - |
dc.description | We assessed the performance of Convolutional Neural Network (CNN)-based approaches using mobile phone images to estimate regrowth density in tropical forages. We generated a dataset composed of 1124 labeled images with 2 mobile phones 7 days after the harvest of the forage plants. Six architectures were evaluated, including AlexNet, ResNet (18, 34, and 50 layers), ResNeXt101, and DarkNet. The best regression model showed a mean absolute error of 7.70 and a correlation of 0.89. Our findings suggest that our proposal using deep learning on mobile phone images can successfully be used to estimate regrowth density in forages. | |
dc.language.iso | eng | |
dc.rights | openAccess | |
dc.title | Deep learning regression approaches applied to estimate tillering in tropical forages using mobile phone images. | |
dc.type | Artigo de periódico | |
dc.subject.thesagro | Banco de Germoplasma | |
dc.subject.thesagro | Forragem | |
dc.subject.thesagro | Panicum Maximum | |
dc.subject.thesagro | Tecnologia | |
dc.subject.nalthesaurus | Forage | |
dc.subject.nalthesaurus | Mechanical harvesting | |
dc.subject.nalthesaurus | Regression analysis | |
dc.subject.nalthesaurus | Tillering | |
dc.description.notes | Na publicação: Mateus Figueiredo Santos. | |
riaa.ainfo.id | 1151204 | |
riaa.ainfo.lastupdate | 2023-01-25 | |
dc.identifier.doi | https://doi.org/10.3390/s22114116 | |
dc.contributor.institution | LUIZ SANTOS, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; JOSÉ MARCATO JUNIOR, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; PEDRO ZAMBONI, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; MATEUS FIGUEIREDO SANTOS, CNPGC; LIANA JANK, CNPGC; EDILENE CAMPOS, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; EDSON TAKASHI MATSUBARA, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL. | |
Aparece nas coleções: | Artigo em periódico indexado (CNPGC)![]() ![]() |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Deep-learning-regression-2022.pdf | 13.29 MB | Adobe PDF | ![]() Visualizar/Abrir |