Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1156510
Título: A multi-attribute approach to evaluating the impact of biostimulants on crop performance.
Autoria: MENDES, R.
BARROS, I. de
D'ANDRÉA, P. A.
D'ANDRÉA-KÜHL, M. S. C.
RODRIGUES, G. S.
Afiliação: RODRIGO MENDES, CNPMA
INACIO DE BARROS, CNPGL
PAULO ANTÔNIO D’ANDRÉA, MICROGEO BIOTECNOLOGIA AGRÍCOLA
MARIA STEFÂNIA CRUANHES D'ANDRÉA-KÜHL, MICROGEO BIOTECNOLOGIA AGRÍCOLA
GERALDO STACHETTI RODRIGUES, CNPMA.
Ano de publicação: 2023
Referência: Frontiers in Plant Science, v. 14, 1214112, 2023.
Conteúdo: An ever-growing collection of commercial biostimulants is becoming available in a wide variety of forms and compositions to improve crop performance. Given the intricate nature of deciphering the underlying mechanisms of commercial products, which typically comprise various biological components, it is crucial for research in this area to have robust tools to demonstrate their effectiveness in field trials. Here, we took a multi-attribute approach to evaluating the impact of biostimulants on crop performance. First, we assessed the impact of a biostimulant on the soil and rhizosphere microbiomes associated to crops in eight reference farms, including corn (3 farms), soybean (2), cotton (2) and sugarcane (1), in different biomes and production contexts in Brazil and Paraguay. Second, we modeled a set of integrated indicators to measure crop responses to biostimulant application, including five analytical themes as follows: i) crop development and production (9 indicators), ii) soil chemistry (9), iii) soil physics (5), iv) soil biology (6) and v) plant health (10). Amplicon 16S rRNA and ITS sequencing revealed that the use of the biostimulant consistently changes the structure of bacterial and fungal communities associated with the production system for all evaluated crops. In the rhizosphere samples, the most responsive bacterial taxa to biostimulant application were Prevotella in cotton; Prauserella and Methylovirgula in corn; and Methylocapsa in sugar cane. The most responsive fungal taxa to biostimulant use were Arachnomyces in soybean and cotton; and Rhizophlyctis in corn. The proposed integrated indicators yielded highly favorable positive impact indices (averaging at 0.80), indicating that biostimulant-treated fields correlate with better plant development and crop performance. Prominent indices were observed for indicators in four themes: soil biology (average index 0.84), crop production (0.81), soil physics (compaction reduction 0.81), and chemical fertility (0.75). The multi-attribute approach employed in this study offers an effective strategy for assessing the efficacy of biostimulant products across a wide range of crops and production systems.
Thesagro: Solo
Estimulante de Crescimento Vegetal
Rizosfera
Microrganismo
Milho
Soja
Algodão
Cana de Açúcar
Química do Solo
Física do Solo
Biologia do Solo
NAL Thesaurus: Growth promotion
Plant development
Microbiome
Rhizosphere
Sustainable agriculture
Palavras-chave: Bioestimulante
Fitossanidade
Impact assessment
Multi-attribute indicators
ISSN: 1664-462X
Digital Object Identifier: https://doi.org/10.3389/fpls.2023.1214112
Tipo do material: Artigo de periódico
Acesso: openAccess
Aparece nas coleções:Artigo em periódico indexado (CNPMA)

Arquivos associados a este item:
Arquivo TamanhoFormato 
Mendes-multi-attribute-approach-2023.pdf2,88 MBAdobe PDFVisualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace