Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1158148
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMANOEL, I. dos S.
dc.contributor.authorRESENDE, M.
dc.contributor.authorSOUSA, P. H. A.
dc.contributor.authorROSA, S. D. V. F. da
dc.contributor.authorCIRILLO, M. A.
dc.date.accessioned2023-11-09T20:46:12Z-
dc.date.available2023-11-09T20:46:12Z-
dc.date.created2023-11-09
dc.date.issued2024
dc.identifier.citationActa Scientiarum. Technology, v. 46, n. 1, e59135, 2024.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1158148-
dc.descriptionABSTRACT. Numerous factors contribute to specialty coffee quality, storage and cooling conditions. We may therefore assume that sensory evaluation results can be corrupted by measurement errors, especially when cuppers are not trained, leading to occurrence of observation outliers. Therefore, this study aimed to propose simulation scenarios considering parametric values of multilevel model fit with robust adaptive regressions to the presence of outliers in a real experiment with processed and unprocessed coffee beans stored at different times and temperatures. In this context, we considered computationally simulated scenarios in which sensory scoring errors can be made at L = 5 and 10 units. The proposed method was feasible for the sensory scoring of an experiment of coffee storage conditions and cooled environments. This is because it included robust characteristics of samples evaluated with up to 30% of outliers.
dc.language.isoeng
dc.rightsopenAccess
dc.titleSimulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage.
dc.typeArtigo de periódico
dc.subject.nalthesaurusRegression analysis
dc.subject.nalthesaurusCold storage
dc.subject.nalthesaurusCoffea
dc.format.extent210 p.
riaa.ainfo.id1158148
riaa.ainfo.lastupdate2023-11-09
dc.identifier.doihttps://doi.org/10.4025/actascitechnol.v46i1.59135
dc.contributor.institutionIURI DOS SANTOS MANOEL, UNIVERSIDADE FEDERAL DE LAVRAS; MARIANA RESENDE, UNIVERSIDADE FEDERAL DE LAVRAS; PEDRO HERIQUE ASSIS SOUSA, UNIVERSIDADE FEDERAL DE LAVRAS; STTELA DELLYZETE VEIGA F DA ROSA, CNPCa; MARCELO ANGELO CIRILLO, UNIVERSIDADE FEDERAL DE LAVRAS.
Aparece nas coleções:Artigo em periódico indexado (SAPC)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Simulation-of-robust-adaptive-regression.pdf364.54 kBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace