Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159065
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCOSTA, T. C. e C. da
dc.contributor.authorRAMOS, L. B.
dc.contributor.authorCAMPANHA, M. M.
dc.contributor.authorGONTIJO NETO, M. M.
dc.date.accessioned2023-12-04T10:33:37Z-
dc.date.available2023-12-04T10:33:37Z-
dc.date.created2023-12-04
dc.date.issued2023
dc.identifier.citationFloresta, v. 53, n. 1, p. 99-109, 2023.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1159065-
dc.descriptionThe modeling of forest growth and production is an essential tool for forestry management because it allows us to perform simulations and project forest biometric variables in the future, thus assisting in stock planning and economic analyses. In this work, a growth and production model by diameter distribution was proposed with the application of the Weibull function based on the recovery of parameters through simplified functions between the forest attributes and the parameters of the Weibull function. The algorithm was developed in Excel’s VBA language. Validation was performed with data from the Continuous Forest Inventory (CFI) in a stand of Khaya grandifoliola and in rows of Eucalyptus spp. in the ILPF system, which were ordinarily organized into seven date combinations, from the most distant from to the closest to the projection date. The results were evaluated by the percentage standard error (SE%) applied to the projected and observed volumes and by the Kolmogorov‒Smirnov test applied to the diameter distributions to verify adherence. It was possible to identify an exact relationship for parameter c of the Weibull function as a function of the percentiles and for parameter b, improving the parameter recovery method. Another methodological improvement was the use of maximum diameter and maximum height for age to adjust the hypsometric function. The algorithm presented results for total volume with errors up to 20% in 85% of the tests.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectPrognose
dc.subjectModelagem
dc.subjectDistribuições probabilísticas
dc.subjectProbability distributions
dc.subjectModeling
dc.titleAlgorithm for the projection of forest growth and production.
dc.typeArtigo de periódico
dc.subject.thesagroProdução Florestal
dc.subject.nalthesaurusPrognosis
riaa.ainfo.id1159065
riaa.ainfo.lastupdate2023-12-04
dc.identifier.doihttp://doi.org/10.5380/rf.v53i1.85562
dc.contributor.institutionTHOMAZ CORREA E CASTRO DA COSTA, CNPMS; LUCAS BARBOSA RAMOS, UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI; MONICA MATOSO CAMPANHA, CNPMS; MIGUEL MARQUES GONTIJO NETO, CNPMS.
Aparece en las colecciones:Artigo em periódico indexado (CNPMS)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Algorithm-for-the-projection-of-forest-growth-and-production.pdf557.69 kBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace