Please use this identifier to cite or link to this item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159178
Title: | Optimizing tropical forest bird surveys using passive acoustic monitoring and high temporal resolution sampling. |
Authors: | METCALF, O. C. BARLOW, J. MARSDEN, S. MOURA, N. G. de BERENGUER, E. FERREIRA, J. N. LEES, A. C. |
Affiliation: | OLIVER C. METCALF, Manchester Metropolitan University; JOS BARLOW, UFLA / Lancaster University / MPEG; STUART MARSDEN, Manchester Metropolitan University; NARGILA GOMES DE MOURA, Cornell University; ERIKA BERENGUER, Lancaster University / University of Oxford; JOICE NUNES FERREIRA, CPATU; ALEXANDER C. LEES, Manchester Metropolitan University / Cornell University. |
Date Issued: | 2022 |
Citation: | Remote Sensing in Ecology and Conservation, v. 8, n. 1, p. 45-56, 2022. |
Description: | Estimation of avian biodiversity is a cornerstone measure of ecosystem condition. Surveys conducted using autonomous recorders are often more efficient at estimating diversity than traditional point-count surveys. However, there is limited research into the optimal temporal resolution for sampling-the trade-off between the number of samples and sample duration when sampling a survey window with a fixed survey effort-despite autonomous recorders allowing easy repeat sampling compared to traditional survey methods. We assess whether the additional temporal coverage from high temporal resolution (HTR) sampling, consisting of 240 15-s samples spread randomly across a survey window detects higher alpha and gamma diversity than low temporal resolution (LTR) sampling of four 15-min samples at the same locations. We do so using an acoustic dataset collected from 29 locations in a region of very high avian biodiversity-the eastern Brazilian Amazon. We find HTR sampling outperforms LTR sampling in every metric considered, with HTR sampling predicted to detect approximately 50% higher alpha diversity, and 10% higher gamma diversity. This effect is primarily driven by increased coverage of variation in detectability across the morning, with the earliest period containing a distinct community that is often under sampled using LTR sampling. LTR sampling produced almost four times as many false absences for species presence. Additionally, LTR sampling incorrectly found 70 species (34%) at only a single forest type when they were in fact present in multiple forest types, while the use of HTR sampling reduced this to just two species (0.9%). When considering multiple independent detections of species, HTR sampling detected three times more uncommon species than LTR sampling. We conclude that high temporal resolution sampling of passive-acoustic monitoring-based surveys should be considered the primary method for estimating the species richness of bird communities in tropical forests. |
Thesagro: | Floresta Tropical Ave Selvagem |
NAL Thesaurus: | Tropical forests |
Keywords: | Bioacustica |
DOI: | https://doi.org/10.1002/rse2.227 |
Type of Material: | Artigo de periódico |
Access: | openAccess |
Appears in Collections: | Artigo em periódico indexado (CPATU) |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Optimizing-tropical.pdf | 1,4 MB | Adobe PDF | View/Open |