Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1160750
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorALBUQUERQUE, R. W.
dc.contributor.authorVIEIRA, D. L. M.
dc.contributor.authorVICENTE, L. E.
dc.contributor.authorARAUJO, L. S. de
dc.contributor.authorFERREIRA, M. E.
dc.contributor.authorGROHMANN, C. H.
dc.date.accessioned2024-01-16T13:32:27Z-
dc.date.available2024-01-16T13:32:27Z-
dc.date.created2024-01-12
dc.date.issued2023
dc.identifier.citationIn: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 20., 2023, Florianópolis. Anais [...]. São José dos Campos: Instituto Nacional de Pesquisas Espaciais, 2023. Ref. 155275.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1160750-
dc.descriptionAbstract: Remotely Piloted Aircrafts (RPA) coupled with Red-Green-Blue (RGB) sensors have a high potential to monitor Forest Restoration (FR), but multispectral sensors onboard RPA are more expensive and still demand more studies when applied to FR monitoring. This work aims to compare an RGB and a multispectral sensor capacity to measure the canopy cover of a FR project. Four canopy cover methods were evaluated using: the point cloud data generated by the RGB sensor; a vegetation index for RGB sensors; the Normalized Difference Vegetation Index (NDVI); and the Near Infra-Red band (Nir) only. The point cloud data method was the most accurate and the only one that presented all accuracies greater than 0.9. However, the multispectral sensor presented more potential for scientific research because it seems to be capable of detecting different photosynthetic activities on the trees and, consequently, different responses to FR treatments, which should be confirmed by future studies.
dc.language.isopor
dc.rightsopenAccess
dc.subjectRemotely Piloted Aircrafts
dc.subjectUnmanned Aerial Vehicle
dc.subjectRed-Green-Blue
dc.subjectInfra-Red
dc.subjectForest Restoration Monitoring
dc.titleComparing forest restoration canopy cover measurements using RGB and multispectral sensors onboard drones.
dc.typeArtigo em anais e proceedings
dc.subject.thesagroReflorestamento
dc.subject.nalthesaurusRemote sensing
dc.subject.nalthesaurusForest restoration
dc.subject.nalthesaurusEnvironmental monitoring
dc.format.extent2p. 53-56.
riaa.ainfo.id1160750
riaa.ainfo.lastupdate2024-01-16
dc.contributor.institutionRAFAEL WALTER ALBUQUERQUE, UNIVERSIDADE DE SÃO PAULO; DANIEL LUIS MASCIA VIEIRA, Cenargen; LUIZ EDUARDO VICENTE, CNPMA; LUCIANA SPINELLI DE ARAUJO, CNPMA; MANUEL EDUARDO FERREIRA, UNIVERSIDADE FEDERAL DE GOIÁS; CARLOS HENRIQUE GROHMANN, UNIVERSIDADE DE SÃO PAULO.
Aparece nas coleções:Artigo em anais de congresso (CENARGEN)


FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace