Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161254
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | BARBEDO, J. G. A. | |
dc.date.accessioned | 2024-01-24T14:33:49Z | - |
dc.date.available | 2024-01-24T14:33:49Z | - |
dc.date.created | 2024-01-24 | |
dc.date.issued | 2023 | |
dc.identifier.citation | Seeds, v. 2, n. 3, p. 340–356, Sept. 2023. | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161254 | - |
dc.description | This review characterizes the current state of the art of deep learning applied to soybean crops, detailing the main advancements achieved so far and, more importantly, providing an in-depth analysis of the main challenges and research gaps that still remain. | |
dc.language.iso | eng | |
dc.rights | openAccess | |
dc.subject | Aprendizado profundo | |
dc.subject | Imagem digital | |
dc.subject | Inteligência artificial | |
dc.subject | Culturas de soja | |
dc.subject | Deep learning | |
dc.title | Deep learning for soybean monitoring and management. | |
dc.type | Artigo de periódico | |
dc.subject.thesagro | Glycine Max | |
dc.subject.nalthesaurus | Digital images | |
dc.subject.nalthesaurus | Crops | |
dc.subject.nalthesaurus | Artificial intelligence | |
riaa.ainfo.id | 1161254 | |
riaa.ainfo.lastupdate | 2024-01-24 | |
dc.identifier.doi | https://doi.org/10.3390/ seeds2030026 | |
dc.contributor.institution | JAYME GARCIA ARNAL BARBEDO, CNPTIA. | |
Aparece en las colecciones: | Artigo em periódico indexado (CNPTIA)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
AP-Deep-learning-soybean-2023.pdf | 2.53 MB | Adobe PDF | ![]() Visualizar/Abrir |