Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1164667
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | CONCEIÇÃO, R. R. P. | |
dc.contributor.author | QUEIROZ, V. A. V. | |
dc.contributor.author | MEDEIROS, E. P. de | |
dc.contributor.author | ARAUJO, J. B. de | |
dc.contributor.author | SILVA, D. D. da | |
dc.contributor.author | MIGUEL, R. de A. | |
dc.contributor.author | STOIANOFF, M. A. R. | |
dc.contributor.author | SIMEONE, M. L. F. | |
dc.date.accessioned | 2024-06-04T18:53:10Z | - |
dc.date.available | 2024-06-04T18:53:10Z | - |
dc.date.created | 2024-06-04 | |
dc.date.issued | 2024 | |
dc.identifier.citation | Brazilian Journal of Biology, v. 84, e277974, 2024. | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1164667 | - |
dc.description | Maize (Zea mays L.) is of socioeconomic importance as an essential food for human and animal nutrition. However, cereals are susceptible to attack by mycotoxin-producing fungi, which can damage health. The methods most commonly used to detect and quantify mycotoxins are expensive and time-consuming. Therefore, alternative non-destructive methods are required urgently. The present study aimed to use near-infrared spectroscopy with hyperspectral imaging (NIR-HSI) and multivariate image analysis to develop a rapid and accurate method for quantifying fumonisins in whole grains of six naturally contaminated maize cultivars. Fifty-eight samples, each containing 40 grains, were subjected to NIR-HSI. These were subsequently divided into calibration (38 samples) and prediction sets (20 samples) based on the multispectral data obtained. The averaged spectra were subjected to various pre-processing techniques (standard normal variate (SNV), first derivative, or second derivative). The most effective pre-treatment performed on the spectra was SNV. Partial least squares (PLS) models were developed to quantify the fumonisin content. The final model presented a correlation coefficient (R2) of 0.98 and root mean square error of calibration (RMSEC) of 508 µg.kg-1 for the calibration set, an R2 of 0.95 and root mean square error of prediction (RMSEP) of 508 µg.kg-1 for the test validation set and a ratio of performance to deviation of 4.7. It was concluded that NIR-HSI with partial least square regression is a rapid, effective, and non-destructive method to determine the fumonisin content in whole maize grains. | |
dc.language.iso | eng | |
dc.rights | openAccess | |
dc.subject | Fumonisina | |
dc.subject | Análise não-destrutiva | |
dc.subject | Imagem hiperespectral | |
dc.subject | Infravermelho próximo | |
dc.subject | Mínimos quadrados parciais | |
dc.title | Determination of fumonisin content in maize using near-infrared hyperspectral imaging (NIR-HSI) technology and chemometric methods. | |
dc.type | Artigo de periódico | |
dc.subject.thesagro | Zea Mays | |
dc.subject.thesagro | Micotoxina | |
riaa.ainfo.id | 1164667 | |
riaa.ainfo.lastupdate | 2024-06-04 | |
dc.identifier.doi | https://doi.org/10.1590/1519-6984.277974 | |
dc.contributor.institution | UNIVERSIDADE FEDERAL DE MINAS GERAIS; VALERIA APARECIDA VIEIRA QUEIROZ, CNPMS; EVERALDO PAULO DE MEDEIROS, CNPA; JOABSON BORGES DE ARAUJO, CNPA; DAGMA DIONISIA DA SILVA ARAUJO, CNPMS; RAFAEL DE ARAUJO MIGUEL, CNPMS; UNIVERSIDADE FEDERAL DE MINAS GERAIS; MARIA LUCIA FERREIRA SIMEONE, CNPMS. | |
Aparece en las colecciones: | Artigo em periódico indexado (CNPMS)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Determination-of-fumonisin-content-in-maize-using-near-infrared.pdf | 971.11 kB | Adobe PDF | ![]() Visualizar/Abrir |