Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1170671
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorSAMPAIO FILHO, J. S.
dc.contributor.authorOLIVEIRA, I. C. M.
dc.contributor.authorPASTINA, M. M.
dc.contributor.authorCAMPOS, M. de S.
dc.contributor.authorOLIVEIRA, E. J. de
dc.date.accessioned2024-12-28T17:51:55Z-
dc.date.available2024-12-28T17:51:55Z-
dc.date.created2024-12-13
dc.date.issued2024
dc.identifier.citationPLoS ONE, v. 19, n, 2, e0315370, 2024.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1170671-
dc.descriptionThe variability in genetic variance and covariance due to genotype × environment interaction (G×E) can hinder genotype selection accuracy, especially for complex traits. This study analyzed G×E interactions in cassava to identify stable, high-performing genotypes and predict agronomic performance in untested environments using factor analytic multiplicative mixed models (FAMM) within multi-environment trials (METs). We evaluated 22 cassava genotypes for fresh root yield (FRY), dry root yield (DRY), shoot yield (ShY), and dry matter content (DMC) across 55 Brazilian environments. FAMM was applied to estimate genetic values and environmental loads, revealing significant genetic variance, especially for FRY (0.16–0.92) and broad-sense heritability (H^ 2) above 0.70 in advanced yield trials. In joint analyses, analytic factor FA4 explained over 88% of genetic variation for all traits despite high G×E and data imbalance. Positive genetic correlations were found between environments for ShY and DRY (0.99 and 1.0, respectively), while FRY and DMC showed negative correlations (-0.82 and -0.95). Latent regression analysis identified hybrids adaptable to a range of environments, as well as genotypes suited to specific conditions. Moderate correlations between environmental covariables (rainfall, altitude, solar radiation) and FA model loadings suggest these factors contribute to high G×E interactions, notably for FRY. The FAMM model provided a robust approach to G×E analysis in cassava, yielding practical insights for breeding programs.
dc.language.isofra
dc.rightsopenAccess
dc.subjectDesempenho agronômico
dc.subjectInteração genótipo x ambiente
dc.titleGenotype x environment interaction in cassava multi-environment trials via analytic factor.
dc.typeArtigo de periódico
dc.subject.thesagroMandioca
dc.subject.thesagroGenética Vegetal
dc.subject.thesagroGenótipo
dc.subject.thesagroRendimento
dc.subject.thesagroRaiz
dc.subject.thesagroParte Aérea
dc.subject.thesagroMatéria Seca
riaa.ainfo.id1170671
riaa.ainfo.lastupdate2024-12-13
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0315370
dc.contributor.institutionJURACI SOUZA SAMPAIO FILHO, UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA; ISADORA CRISTINA MARTINS OLIVEIRA; MARIA MARTA PASTINA, CNPMS; MARCOS DE SOUZA CAMPOS; EDER JORGE DE OLIVEIRA, CNPCA.
Aparece en las colecciones:Artigo em periódico indexado (CNPMS)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Genotype-x-environment-interaction-in-cassava.pdf9.26 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace