Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1171096
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | ALVES, J. S. | |
dc.contributor.author | PIRES, B. P. C. | |
dc.contributor.author | SANTOS, L. F. | |
dc.contributor.author | MELLO JÚNIOR, N. R. C. de | |
dc.contributor.author | MONTEIRO, S. R. S. | |
dc.contributor.author | KIDO, E. A. | |
dc.contributor.author | WALSH, K. B. | |
dc.contributor.author | FREITAS, S. T. de | |
dc.date.accessioned | 2025-01-02T16:47:07Z | - |
dc.date.available | 2025-01-02T16:47:07Z | - |
dc.date.created | 2025-01-02 | |
dc.date.issued | 2024 | |
dc.identifier.citation | In: CONGRESSO BRASILEIRO DE PROCESSAMENTO MÍNIMO E PÓS-COLHEITA DE FRUTAS, FLORES E HORTALIÇAS, 3., 2024, Piracicaba. Anais... Piracicaba: ESALQ/USP, 2024. | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1171096 | - |
dc.description | The objective of this study was to develop a nondestructive method to predict and detect black flesh internal disorder in mango using visible/near-infrared (Vis-NIR) and machine learning. Vis-NIR spectra of healthy and disordered ‘Palmer’, ‘Keitt’ and ‘Tommy Atkins’ mangos were acquired in the wavelength range of 300 to 1100 nm using a portable spectrometer (F-750 Produce Quality Meter, Felix Instruments, WA, USA). Spectra were collected from the equatorial region of both sides of each fruit, with fruit at 24°C (±1 °C). Spectra were collected from 543 fruit that resulted in 1,086 spectra at harvest (healthy = 350; disordered = 736) and 1,051 after storage at 12 °C (±1 °C), when the fruit reached the ready-to-eat ripening stage (healthy = 349; disordered = 702). VIS-NIR spectra data were collected at 24 °C (±1 °C). Spectra data were subjected to the second derivative pre-processing method. Random Forest, Multilayer Perceptron, SMO, LibSVM and J48 algorithms were trialed using the WEKA 3.9 Software. The algorithms performances were evaluated using tenfold cross-validation and model performances were determined by the average accuracy, precision, recall, F-measure, receiver operating characteristics curve (ROC), and Kappa statistics. The models to predict black flesh at harvest showed an average accuracy ranging from 80 to 83.6%, ROC area from 0.80 to 0.91, Kappa from 0.59 to 0.63, precision, recall and f-measure from 0.82 to 0.84 across algorithms triled. The models developed to detect black flesh in ready-to-eat mango showed an average accuracy ranging from 73.2 to 77%, ROC area from 0.63 to 0.86, Kappa from 0.32 to 0.49, precision from 0.74 to 0.77, recall and f-measure from 0.73 to 0.77. The most accurate models to predict at harvest and detect in ready-to-eat mango the incidence of black flesh were developed with the Random Forest algorithm, reaching accuracy of 83.6% and 77%, respectively. | |
dc.language.iso | eng | |
dc.rights | openAccess | |
dc.subject | Polpa preta | |
dc.subject | Vis-NIR | |
dc.title | Early detection of black flesh internal physiological disorder in mango by Vis-NIR spectra and machine learning. | |
dc.type | Resumo em anais e proceedings | |
dc.subject.thesagro | Manga | |
dc.subject.thesagro | Pós-Colheita | |
dc.subject.thesagro | Distúrbio Fisiológico | |
dc.subject.nalthesaurus | Mangoes | |
dc.subject.nalthesaurus | Postharvest technology | |
dc.subject.nalthesaurus | Postharvest physiology | |
dc.description.notes | Resumo 179. | |
riaa.ainfo.id | 1171096 | |
riaa.ainfo.lastupdate | 2025-01-02 | |
dc.contributor.institution | JASCIANE S. ALVES, UNIVERSIDADE FEDERAL DE PERNAMBUCO | |
dc.contributor.institution | BRUNA P. C. PIRES, UNIVERSIDADE FEDERAL DE PERNAMBUCO | eng |
dc.contributor.institution | LUANA F. SANTOS, UNIVERSIDADE FEDERAL DE PERNAMBUCO | eng |
dc.contributor.institution | NILO RICARDO CORRÊA DE MELLO JÚNIOR, STATE UNIVERSITY OF BAHIA | eng |
dc.contributor.institution | SANDY R. S. MONTEIRO, UNIVERSIDADE FEDERAL DE PERNAMBUCO | eng |
dc.contributor.institution | EDERSON A. KIDO, UNIVERSIDADE FEDERAL DE PERNAMBUCO | eng |
dc.contributor.institution | KERRY B. WALSH, CENTRAL QUEENSLAND UNIVERSITY | eng |
dc.contributor.institution | SERGIO TONETTO DE FREITAS, CPATSA. | eng |
Aparece en las colecciones: | Resumo em anais de congresso (CPATSA)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Early-detection-of-black-flesh-internal-physiological-disorder-in-mango-by-Vis-NIR-spectra-and-machine-learning..pdf | 276.5 kB | Adobe PDF | ![]() Visualizar/Abrir |